假设我有一个项目列表,其中每个项目可以重复一次或多次(1到n)。我试图找到一种算法,从列表中提取随机项,直到它为空,但约束条件是项目不能连续重复超过固定次数(每个项目可能不同)项目)。我希望算法具有正确的概率" (我试着稍后解释一下)。
例如,假设我有这个清单:
Item | Count | Max. consecutive
-----+-------+-----------------
A | 2 | 1
B | 4 | 2
一些结果可能是:
B A B A B B
B B A B A B
但以下情况不正确,因为" B"连续3次重复,最大值为2:
B B B A B A
我设法创建了一个有效的算法,但它的概率存在问题。我将把代码放在第一位,然后再谈谈这个问题。它是一个C#类;抱歉,如果你不喜欢这种格式或GOTO,那就让我们成为朋友; P
要使用它,您实例化一个提供唯一项目数的对象,使用SetIndexData()
添加每个项目的信息(元素数量和最大重复次数),并调用GetNextRandomIndex()
以获取下一个随机项(我使用int
实现它,好像项目是索引一样,你必须创建一个索引集合来存储真实项目的值)。
您可以使用CheckIndexMaxConsecutiveCorrectness()
方法检查是否可以在具有指定总元素的包中具有指定最大重复次数的项目。例如,如果一个包只有1个包含2个元素的项目,但我们说它只能重复一次,那么显然是不可能的,所以CheckIndexMaxConsecutiveCorrectness()
会返回false
。
方法GetIndexMinMaxGroups()
在类内部用于检索项目的连续元素的最小和最大数量组(例如,在B B B A B A
序列中,我们有2个组用于&# 34; A"和2" B")。实际上,在这种方法中计算的数字并不完全正确,因为有一些变量没有考虑到,但它返回的值对两件事很有用:从CheckIndexMaxConsecutiveCorrectness()
进行检查(如果最小组数大于最大值,则最大重复次数不正确),并且知道何时必须从GetNextRandomIndex()
返回确定的项目(当最小值等于最大值)。我还没有使用任何数学算法来推导出那些属性,所以有些东西可能是错的,尽管到目前为止它已经神奇地"在我的测试中完美地工作了数百万次......
class ShuffleBag
{
/*** INFORMATION FOR THE INDEXES ***/
// Class for the data:
class IndexData
{
public int Count = 0; // The current number of instances of the index in the bag.
public int MaxConsecutive = int.MaxValue; // The maximum consecutive repetitions allowed for the index.
}
// List of indexes data for this bag:
IndexData[] IndexesDataList;
/*** MEMBERS USED FOR CALCULATIONS ***/
// Random number generator:
Random RandGenerator;
// Remaining elements in the bag:
int _RemainingElementsCount = 0;
public int RemainingElementsCount
{
get { return _RemainingElementsCount; }
}
// Last retrieved index (-1 if no index has been retrieved yet),
// and the last consecutive repetitions of that index:
int LastIndex = -1;
int LastRepetitions = 0;
///==============///
/// Constructor. ///
///==============///
public ShuffleBag(int uniqueIndexesCount)
{
IndexesDataList = new IndexData[uniqueIndexesCount];
for (int i = 0; i < uniqueIndexesCount; i++)
IndexesDataList[i] = new IndexData();
RandGenerator = new Random();
}
///===========================================================///
/// Resets the shuffle bag; must be called before reusing it. ///
/// The number of unique indexes won't be reset. ///
/// Doesn't need to be called just after creating the bag. ///
///===========================================================///
public void Reset()
{
for (int i = 0; i < IndexesDataList.Length; i++)
{
IndexesDataList[i].Count = 0;
IndexesDataList[i].MaxConsecutive = int.MaxValue;
}
_RemainingElementsCount = 0;
LastIndex = -1;
LastRepetitions = 0;
}
///==================================================================================================///
/// Checks if it's possible to honor the max repetitions of an index with the provided data. ///
/// If it was not possible, the behaviour of a shuffle bag with those parameters would be undefined. ///
///==================================================================================================///
public static bool CheckIndexMaxConsecutiveCorrectness(int maxConsecutive, int indexElements, int bagTotalElements)
{
int min, max;
GetIndexMinMaxGroups(indexElements, maxConsecutive, bagTotalElements, out min, out max);
return min <= max;
}
///=====================================================================///
/// Sets the data for the specified index. ///
/// Can be called after starting to use the bag, ///
/// but if any parameters make the max consecutive repetitions invalid, ///
/// the behaviour of the bag will be undefined. ///
///=====================================================================///
public void SetIndexData(int index, int count, int maxConsecutive)
{
IndexData data = IndexesDataList[index];
_RemainingElementsCount += count - data.Count;
data.Count = count;
data.MaxConsecutive = maxConsecutive;
}
///====================================================================================================================///
/// Retrieves the next random index. The caller must check if there are remaining elements in the bag to be retrieved. ///
///====================================================================================================================///
public int GetNextRandomIndex()
{
/*** GET THE INDEX ***/
int index;
// If, for any index, the minimum possible groups equals the maximum, it must be the returned index:
for (index = 0; index < IndexesDataList.Length; index++)
{
IndexData data = IndexesDataList[index];
int minGroups, maxGroups;
GetIndexMinMaxGroups(data.Count, data.MaxConsecutive, _RemainingElementsCount, out minGroups, out maxGroups);
if (minGroups == maxGroups)
goto _INDEX_FOUND_;
}
// Get a random number to choose the index:
int rand = RandGenerator.Next(_RemainingElementsCount);
for (index = 0; index < IndexesDataList.Length; index++)
{
IndexData data = IndexesDataList[index];
// This index corresponds with the random number:
if (rand < data.Count)
{
// Check if the index has reached the maximum consecutive repetitions;
// in that case, get the next available one:
if (index == LastIndex && data.MaxConsecutive == LastRepetitions)
{
for (int k = 1; k <= IndexesDataList.Length - 1; k++)
{
int m = WrapIndexSimple(index + k, IndexesDataList.Length);
if (IndexesDataList[m].Count > 0)
{
index = m;
goto _INDEX_FOUND_;
}
}
}
goto _INDEX_FOUND_;
}
// This index doesn't correspond with the random number; update it to check the next index:
else
{
rand -= data.Count;
}
}
/*** INDEX FOUND, UPDATE AND RETURN ***/
_INDEX_FOUND_:
IndexData resultData = IndexesDataList[index];
resultData.Count--;
_RemainingElementsCount--;
if (LastIndex == index)
{
LastRepetitions++;
}
else
{
LastIndex = index;
LastRepetitions = 1;
}
return index;
}
///===============================================================================///
/// Calculates the minimum and maximum possible groups of consecutive repetitions ///
/// for an index with the specified data. ///
/// If any provided data is invalid, the behaviour and results are undefined. ///
///===============================================================================///
static void GetIndexMinMaxGroups(int indexRemainingElements, int indexMaxConsecutive, int bagRemainingElements, out int min, out int max)
{
int rem;
int div = Math.DivRem(indexRemainingElements, indexMaxConsecutive, out rem);
min = rem == 0 ? div : div + 1;
max = bagRemainingElements - indexRemainingElements + 1;
}
///=======================================================///
/// Converts an index out of bounds to a valid value. ///
/// "length" is the number of elements of the collection. ///
/// Only works for indexes that are less than 2*length. ///
///=======================================================///
static int WrapIndexSimple(int index, int length)
{
if (index >= length)
return index - length;
else if (index < 0)
return length + index;
else
return index;
}
}
正如我所说,到目前为止,课程已经按照我想要的方式工作,在不超过重复次数的情况下提取项目。问题是每次调用GetNextRandomIndex()
时提取项目的概率不是它们应该是的。例如,如果我有这个:
Item | Count | Max. consecutive
-----+-------+-----------------
a | 30 | 3
X | 10 | 2
如果我没错,将有13种不同的可能序列。该方法应返回&#34; a&#34;每次返回12次&#34; X&#34;在前3个电话中;对于第四个,它应该返回&#34; a&#34;每3次返回10次&#34; X&#34 ;;这些是不同的序列:
Seq. 1 | Seq. 2 | Seq. 3 | Seq. 4 | Seq. 5 | Seq. 6 | Seq. 7 | Seq. 8 | Seq. 9 | Seq. 10 | Seq. 11 | Seq. 12 | Seq. 13 | Number of “a” | Number of “X”
-------+--------+--------+--------+--------+--------+--------+--------+--------+---------+---------+---------+---------+---------------+--------------
a | a | a | X | a | a | a | a | a | a | a | a | a | 12 | 1
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | X | X | X | X | X | X | X | X | X | 3 | 10
a | a | a | X | X | a | a | a | a | a | a | a | a | 11 | 2
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | X | X | X | X | X | X | X | X | 4 | 9
a | a | a | X | X | X | a | a | a | a | a | a | a | 10 | 3
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | X | X | X | X | X | X | X | 5 | 8
a | a | a | X | X | X | X | a | a | a | a | a | a | 9 | 4
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | X | X | X | X | X | X | 6 | 7
a | a | a | X | X | X | X | X | a | a | a | a | a | 8 | 5
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | a | X | X | X | X | X | 7 | 6
a | a | a | X | X | X | X | X | X | a | a | a | a | 7 | 6
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | a | a | X | X | X | X | 8 | 5
a | a | a | X | X | X | X | X | X | X | a | a | a | 6 | 7
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | a | a | a | X | X | X | 9 | 4
a | a | a | X | X | X | X | X | X | X | X | a | a | 5 | 8
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | a | a | a | a | X | X | 10 | 3
a | a | a | X | X | X | X | X | X | X | X | X | a | 4 | 9
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | a | a | a | a | a | X | 11 | 2
a | a | a | X | X | X | X | X | X | X | X | X | X | 3 | 10
a | a | X | a | a | a | a | a | a | a | a | a | a | 12 | 1
a | X | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
X | a | a | a | a | a | a | a | a | a | a | a | a | 12 | 1
这个小型控制台应用程序显示了该类的使用结果。对于指定的迭代次数,它会填充包并提取所有随机项。最后,它显示了每个项目的最大连续重复次数,以及每个项目的累计出现次数以及每次调用GetNextRandomIndex()
的所有迭代次数。正如您所看到的,在经过100万次迭代后,第一次调用的累积元素大约为750,000,而#34; a&#34; &#34; X&#34;和最后一次通话的250,000约为999,950&#34; a&#34;和#34; X&#34;:
static void Main(string[] args)
{
int MaxIterations = 1000000;
bool ShowResults = true;
string[] items = new string[] { "a", "X" };
int[] count = new int[] { 30, 10 };
int[] maxRepet = new int[] { 3, 2 };
int elementCount = count.Sum();
bool maxRepetOK = true;
for (int i = 0; i < items.Length; i++)
maxRepetOK = maxRepetOK && ShuffleBag.CheckIndexMaxConsecutiveCorrectness(maxRepet[i], count[i], elementCount);
if (! maxRepetOK)
{
Console.WriteLine("*** Bad number of repetitions!! ***\n");
goto _END_;
}
Dictionary<string, Tuple<int,int>> results = new Dictionary<string,Tuple<int,int>>();
for (int i = 0; i < items.Length; i++)
results.Add(items[i], new Tuple<int,int>(0, 0));
int[,] resultsPerCall = new int[elementCount, items.Length];
ShuffleBag bag = new ShuffleBag(items.Length);
int iterations = 0;
for (int x = 0; x < MaxIterations; x++)
{
iterations++;
bag.Reset();
for (int i = 0; i < items.Length; i++)
bag.SetIndexData(i, count[i], maxRepet[i]);
string prevItem = "";
int prevRepetitions = 0;
int row = 0;
while (bag.RemainingElementsCount > 0)
{
int newIndex = bag.GetNextRandomIndex();
if (prevItem == items[newIndex])
{
prevRepetitions++;
}
else
{
prevItem = items[newIndex];
prevRepetitions = 1;
}
var resultAnt = results[items[newIndex]];
results[items[newIndex]] = new Tuple<int,int>(resultAnt.Item1 + 1, Math.Max(prevRepetitions, resultAnt.Item2));
resultsPerCall[row, newIndex]++;
if (ShowResults)
{
Console.WriteLine(items[newIndex]);
}
row++;
}
if (ShowResults && MaxIterations > 1)
{
Console.WriteLine("\nESC:\tEnd\nENTER:\tNext iteration\nTAB:\tAll iterations");
while (true)
{
switch (Console.ReadKey(true).Key)
{
case ConsoleKey.Enter:
goto _CONTINUE_;
case ConsoleKey.Escape:
goto _RESULTS_;
case ConsoleKey.Tab:
ShowResults = false;
goto _CONTINUE_;
}
}
_CONTINUE_:
Console.Clear();
Console.WriteLine("Iterating ...");
}
}
_RESULTS_:
Console.Clear();
Console.WriteLine("RESULTS\n------------------------------------------");
for (int i = 0; i < items.Length; i++)
{
var data = results[items[i]];
double average = (double)data.Item1 / iterations;
Console.WriteLine(items[i] +
": Average = " + average.ToString() + (average != count[i] ? "(!)" : "") +
"\t\tMax. repetitions = " + data.Item2.ToString() + (data.Item2 > maxRepet[i] ? "(!)" : ""));
}
Console.WriteLine();
for (int i = 0; i < elementCount; i++)
{
Console.Write((i+1).ToString("00") + ")");
for (int k = 0; k < items.Length; k++)
{
Console.Write(" \t" + items[k] + ": " + resultsPerCall[i, k].ToString());
}
Console.WriteLine();
}
_END_:
Console.WriteLine("\n\nESC to exit");
while (Console.ReadKey(true).Key != ConsoleKey.Escape);
}
问题是,从GetNextRandomIndex()
开始,我只使用项目剩余元素的数量作为选择它的概率,因此对于第一次调用,获得&#34; a&#34;获得&#34; X&#34;的概率是3倍。 (因为&#34; a&#34;以及&#34; X&#34;中有30个元素。有没有人知道如何更改我的算法(或使用不同的算法)来获得正确的概率?
答案 0 :(得分:1)
正如所承诺的,这是马尔可夫链蒙特卡罗采样器。我似乎无法
使用Propp-Wilson技术获得精确版本;这只是一个
会聚到一个偏向和均匀的分布
期望的结果,可能相当缓慢。定义a的得分
排列是无效字母的数量。具体来说,如果A
应该最多连续出现一次,B
最多应出现
连续两次,然后得分
AAABBAABBBB
^^ ^ ^^
是5
,其中的贡献字母标有^
。
从随机排列开始,重复选择两个位置 随机独立替换。对排列进行评分 交换那些位置的字母;这是建议的 排列。计算两个(当前得分 - 的权力) 建议得分)。如果0和1之间的均匀随机浮点数较小 比这个数字,然后保持这个拟议的交换;否则,撤消它。做 只要你能站立,那就采取下一个有效的排列。
答案 1 :(得分:0)
这是一种精确采样的方法,但效果不如我所希望的那样好。我发布它以防它无论如何都证明是有用的。给定最大运行长度,准备一个识别有效字符串的自动机。
def make_automaton(max_consecutive):
states = {letter * j for letter, k in max_consecutive.items() for j in range(1, k + 1)}
states.add('')
automaton = {}
for state in states:
transitions = {}
for letter in max_consecutive.keys():
new_state = state + letter if letter == state[-1:] else letter
if new_state in states:
transitions[letter] = new_state
automaton[state] = transitions
return automaton
以下是行动中的代码。
>>> from pprint import pprint
>>> pprint(make_automaton({'a': 3, 'X': 2}))
{'': {'X': 'X', 'a': 'a'},
'X': {'X': 'XX', 'a': 'a'},
'XX': {'a': 'a'},
'a': {'X': 'X', 'a': 'aa'},
'aa': {'X': 'X', 'a': 'aaa'},
'aaa': {'X': 'X'}}
现在,有一种精确采样的方法似乎占用了太多空间。准备一对由自动机状态和多字母组成的索引表。表值给出了具有指定字母计数的单词数,这些单词将自动机置于指定状态。然后我们可以通过对最终状态进行采样并使用条件概率来导出在那里得到自动机的字符串来使用该表。
我的想法是,不是试图记住计数,而是从以下分布中抽样,直到我们得到正确的字母数。每个字母根据计数独立分配。我们根据生成的单词进行调整。
这是代码的其余部分。只要计数不是太大而且运行时间不是太短,它似乎工作正常。
from collections import defaultdict
def make_probabilities(count, automaton):
probabilities = [{min(automaton): 1.0}]
total = sum(count.values())
for i in range(1, total + 1):
distribution = defaultdict(float)
for state, p in probabilities[-1].items():
transitions = automaton[state]
for letter, k in count.items():
if letter in transitions:
distribution[transitions[letter]] += p * (k / total)
probabilities.append(dict(distribution))
return probabilities
pprint(make_probabilities({'a': 30, 'X': 10}, make_automaton({'a': 3, 'X': 2})))
from random import random
def weighted_sample(distribution):
while True:
sample = random() * sum(distribution.values())
for letter, k in distribution.items():
sample -= k
if sample < 0.0:
return letter
from collections import Counter
print(Counter(weighted_sample({'a': 30, 'X': 10}) for i in range(10000)))
def unbiased_sample(count, max_consecutive):
automaton = make_automaton(max_consecutive)
probabilities = make_probabilities(count, automaton)
total = sum(count.values())
while True:
sample = []
state = weighted_sample(probabilities[-1])
for i in range(len(probabilities) - 2, -1, -1):
conditional_distribution = {}
for old_state, p in probabilities[i].items():
transitions = automaton[old_state]
for letter, k in count.items():
if letter in transitions and transitions[letter] == state:
conditional_distribution[(old_state, letter)] = p * (k / total)
state, letter = weighted_sample(conditional_distribution)
sample.append(letter)
if Counter(sample) == count:
return ''.join(sample)
for r in range(1000):
print(unbiased_sample({'A': 10, 'B': 10, 'C': 10, 'D': 10}, {'A': 5, 'B': 4, 'C': 3, 'D': 2}))