Hadoop分布式缓存会引发FileNotFound错误

时间:2014-10-07 17:21:26

标签: java hadoop mapreduce distributed-caching

我正在尝试使用listOfWords文件来仅计算来自任何输入文件的那些单词。尽管我已经验证文件位于HDFS中的正确位置,但是将错误视为FileNotFound。

内部驱动程序:

    Configuration conf = new Configuration();
    DistributedCache.addCacheFile(new URI("/user/training/listOfWords"), conf);
    Job job = new Job(conf,"CountEachWord Job");

Inside Mapper:

private Path[] ref_file;
ArrayList<String> globalList = new ArrayList<String>();

public void setup(Context context) throws IOException{

    this.ref_file = DistributedCache.getLocalCacheFiles(context.getConfiguration());

    FileSystem fs = FileSystem.get(context.getConfiguration());

    FSDataInputStream in_file = fs.open(ref_file[0]);
    System.out.println("File opened");

    BufferedReader br  = new BufferedReader(new InputStreamReader(in_file));//each line of reference file
    System.out.println("BufferReader invoked");

    String eachLine = null;
    while((eachLine = br.readLine()) != null)
    {
        System.out.println("eachLine is: "+ eachLine);
        globalList.add(eachLine);

    }

}

错误讯息:

 hadoop jar CountOnlyMatchWords.jar CountEachWordDriver Rhymes CountMatchWordsOut1
 Warning: $HADOOP_HOME is deprecated.

14/10/07 22:28:59 WARN mapred.JobClient: Use GenericOptionsParser for parsing the     arguments.      Applications should implement Tool for the same.
14/10/07 22:28:59 INFO input.FileInputFormat: Total input paths to process : 1
14/10/07 22:28:59 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/10/07 22:28:59 WARN snappy.LoadSnappy: Snappy native library not loaded
14/10/07 22:29:00 INFO mapred.JobClient: Running job: job_201409300531_0041
14/10/07 22:29:01 INFO mapred.JobClient:  map 0% reduce 0%
14/10/07 22:29:14 INFO mapred.JobClient: Task Id : attempt_201409300531_0041_m_000000_0, Status : FAILED
 java.io.FileNotFoundException: File does not exist: /home/training/hadoop-temp/mapred/local /taskTracker/distcache/5910352135771601888_2043607380_1633197895/localhost/user/training/listOfWords

我已经在HDFS中验证了所提到的文件存在。我也尝试过使用localRunner。仍然没有奏效。

4 个答案:

答案 0 :(得分:1)

在main方法中,我使用它。

def find(query: JsObject = Json.obj())(implicit reader: Reads[T]): Future[List[T]] = {
    collection.flatMap(_.find(query).cursor[T](ReadPreference.nearest).collect[List](Int.MaxValue, Cursor.FailOnError()))
}

然后在Mapper中我使用了这个样板。

  Job job = Job.getInstance();
  job.setJarByClass(DistributedCacheExample.class);
  job.setJobName("Distributed cache example");
  job.addCacheFile(new Path("/user/cloudera/datasets/abc.dat").toUri());

我正在使用这些依赖项

  protected void setup(Context context) throws IOException, InterruptedException {
     URI[] files = context.getCacheFiles();
     for(URI file : files){
     if(file.getPath().contains("abc.dat")){
       Path path = new Path(file);
       BufferedReader reader = new BufferedReader(new FileReader(path.getName()));
       String line = reader.readLine();
       while(line != null){
         ......
       }
     }
  }

对我来说,欺骗部分是在 <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-mapreduce-client-core</artifactId> <version>2.7.3</version> </dependency> 使用path.getName,如果不是FileReader

答案 1 :(得分:0)

你可以尝试这个来检索文件。

URI [] files = DistributedCache.getCacheFiles(context.getConfiguration());

您可以遍历文件。

答案 2 :(得分:0)

尝试this

在驱动程序中

Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Path cachefile = new Path("path/to/file");
FileStatus[] list = fs.globStatus(cachefile);
for (FileStatus status : list) {
 DistributedCache.addCacheFile(status.getPath().toUri(), conf);
}

在Mapper setup()

public void setup(Context context) throws IOException{
 Configuration conf = context.getConfiguration();
 FileSystem fs = FileSystem.get(conf);
 URI[] cacheFiles = DistributedCache.getCacheFiles(conf);
 Path getPath = new Path(cacheFiles[0].getPath());  
 BufferedReader bf = new BufferedReader(new InputStreamReader(fs.open(getPath)));
 String setupData = null;
 while ((setupData = bf.readLine()) != null) {
   System.out.println("Setup Line in reducer "+setupData);
 }
}

答案 3 :(得分:0)

   try {
        URI[] cacheFiles = DistributedCache.getCacheFiles(job); // Fetch the centroid file from distributed cache
        Path getPath = new Path(cacheFiles[0].getPath());  
        FileSystem fs = FileSystem.get(job);
        if (cacheFiles != null && cacheFiles.length > 0) {
            // Goes in if the file exist and is not empty
            String line; 
            centers.clear(); // clearing the centers array list each time
            BufferedReader cacheBufferReader = new BufferedReader(new InputStreamReader(fs.open(getPath)));
            try {
                while ((line = cacheBufferReader.readLine()) != null) {
                        centers.add(line);
                } 
            } catch (IOException e) {
                System.err.println("Exception: " + e);
            }
        }
    } catch (IOException e) {
        System.err.println("Exception: " + e);
    }