排列网格大小和块大小

时间:2014-09-28 10:57:02

标签: c++ cuda gpu

我有200个矩阵A [i](其尺寸为4096 * 48),以及48个向量v [j](其尺寸为48 * 1)。我想计算A [i] * v [j],(i = 0:199,j = 1:47)。

我考虑如何从昨天开始排列网格大小和块大小。但我现在还没有找到答案。有人能给我一些建议吗?

每个块的最大数量是512.这是我的工作环境。 enter image description here

以下是我的代码。它运作正常。我检查过。但它比Matlab慢:(

#include<iostream>
#include <mat.h>
#include <time.h>
#include <cuda_runtime.h>
#include "cuda.h"

using std::cout;
using std::endl;
using namespace cv;
using namespace std;

#include <limits>
#include <iostream>
#include <cstdlib>
using namespace std;

#define kernel_size 48

////////////////////////////////////////////

typedef struct {
    int width;
    int height;
    int stride; 
    float* elements;
} Matrix;



// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = d_A.stride = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
        cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = d_B.stride = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
        cudaMemcpyHostToDevice);
    // Allocate C in device memory
    Matrix d_C;
    d_C.width = d_C.stride = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);
    // Invoke kernel
    dim3 dimBlock(1,B.height);
    dim3 dimGrid(A.height,  C.width);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
        cudaMemcpyDeviceToHost);
    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
}
// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Block row and column
    int blockCol = blockIdx.y;
    int blockRow = blockIdx.x;

    float Cvalue = 0;
    // Thread row and column within Csub
    int row = threadIdx.y;
    int col = threadIdx.x;
    // Loop over all the sub-matrices of A and B that are
    // required to compute Csub
    // Multiply each pair of sub-matrices together
    // and accumulate the results


    // Shared memory used to store Asub and Bsub respectively
    __shared__ float As[1][kernel_size];
    __shared__ float Bs[kernel_size][1];
    // Load Asub and Bsub from device memory to shared memory
    // Each thread loads one element of each sub-matrix


    As[0][row] = A.elements[blockRow * A.stride + row+B.height*blockCol];
    Bs[row][0] = B.elements[row];
    // Synchronize to make sure the sub-matrices are loaded
    // before starting the computation
    __syncthreads();
    // Multiply Asub and Bsub together
    for (int e = 0; e < B.height; ++e)
    {
        Cvalue += As[0][e] * Bs[e][0];

    }
    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    __syncthreads();

    // Write Csub to device memory
    // Each thread writes one element
    C.elements[blockRow * C.stride +blockCol]= Cvalue;
}

//////////////////





float *   gen_matrix(int n /*row*/, int m /*col*/){

    float *A;
    //srand(1023);
    A = (float *) malloc(n*m*sizeof(float));

    for(int row = 0;row < n;row++)
        for(int col = 0;col < m;col++) {
            A[row*m+col] =  rand()%10; 
        }

        /*
        // print matrix elements.
        for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j)
        cout << " [" << i << "," << j << "] " << A[i*m+j] ;
        cout << endl;
        }
 */
        return  A;
}



int main()
{
    int k=kernel_size;
    int s=2000;
    int m =4096;
    //int m=2;
    //int s=1;
    int n = k*s;
    float *Ae = gen_matrix(m,n);
    float *Be= gen_matrix(k,1);00
    float *Ce=(float *) malloc(m*s*sizeof(float));

    Matrix A ={n,m,n,Ae};
    Matrix B ={1,k,1,Be};
    Matrix C ={s,m,s,Ce};

    const clock_t begin_time = clock();
    MatMul(A,   B,  C);
    std::cout << float( clock () - begin_time ) /  CLOCKS_PER_SEC;

    for (int i = 0; i < 3; ++i) {
        for (int j = 0; j <7; ++j)
            cout << " [" << i << "," << j << "] " << Ce[i*m+j] ;
        cout << endl;
    }


    //check
    float *Ce2=(float *) malloc(s*m*sizeof(float));
    for (int i = 0; i < m; i++)
    {
        for (int j = 0; j < s; j++)
        {
            Ce2[i*s+j]=0;
        }
    }
    for (int i = 0; i < m; i++)
    {
        for (int j = 0; j < s; j++)
        {
            for (int ind = 0; ind < k; ind++)
            {
                Ce2[i*s+j]=Ce2[i*s+j]+Ae[j*k+ind+i*k*s]*Be[ind];
            //  printf("%f---****%f\n",Ae[j*k+ind+i*k*s],Be[ind]);
            }
            if (Ce2[i*s+j]!= Ce[i*s+j])
            {
                printf("%f----%f\n",Ce2[i*s+j],Ce[i*s+j]);
            }

        }

    }





    free(Ae);
    free(Be);
    free(Ce);
}

1 个答案:

答案 0 :(得分:1)

这只是一个矩阵 - 矩阵乘法问题。如果你想让事情快速运行,你不应该编写自己的矩阵 - 矩阵乘法码。使用CUBLAS Sgemm。

从概念上讲,如果您安排这样的A矩阵:

[A0]
[A1]
[A2]
...
[A199]

然后你会得到一个新的矩阵AA,即(4096 * 200)行x 48列。

将48 V个向量(48x1)排列在48x48矩阵(VV)中:

[V0][V1][V2]...[V47]

(每个V向量是新矩阵VV

您现在有一个矩阵乘法问题(AA * VV),即(4096 * 200)x48乘以48x48,得到(4096 * 200)x 48结果。此结果有一个长度为4096 * 200的列向量,其中包含您尝试执行的各个矩阵向量乘法的200个结果。每列* 48列的200个结果组合在一起,为您提供原始问题将创建的所有结果。第一列将包含[V0]的结果乘以200 A矩阵中的每一个,第二列将包含[V1]的结果乘以200 A中的每一个矩阵等。

一旦您安排了这样的数据,使用CUBLAS Sgemm应该是GPU上最快的方法。请注意,CUBLAS期望底层存储是列专用的,因此如果要重新排列数据,您可能需要牢记这一点。有CUDA sample code for CUBLAS matrix multiplication

在您的代码中,您显示实际上有2000 A个矩阵,但您的问题是200.我在答案中使用了200,但概念与2000 A的概念相同矩阵。