要考虑的一些示例R代码:
df = data.frame(x=letters[1:4], y=letters[5:8])
find.key <- function(x, li, default=NA) {
ret <- rep.int(default, length(x))
for (key in names(li)) {
ret[x %in% li[[key]]] <- key
}
return(ret)
}
x2 = list("Alpha" = "a",
"Beta" = "b",
"Other" = c("c","d"))
y2 = list("Epi" = "e",
"OtherY" = c("f", "g", "h"))
# This is the code in question, imagine many variables and calls to find.key()
df$NewX2 = find.key(df$x, x2)
df$Newy2 = find.key(df$y, y2)
# df
# x y NewX2 Newy2
# 1 a e Alpha Epi
# 2 b f Beta OtherY
# 3 c g Other OtherY
# 4 d h Other OtherY
因此,我想要通过find.key function基于查找表(关联数组/列表)添加新变量(NewX2,Newy2)。
有没有办法保持我的代码干?具体来说:
df$NewX2 = find.key(df$x, x2)
df$Newy2 = find.key(df$y, y2)
我不确定sapply
或lapply
能提供帮助吗?或者像%=%
那样c(df$NewX2, df$Newy2) = find.key(c(df$x, df$y), c(x2, y2))
。
我喜欢这样的事情......(希望这是有道理的):
{{1}}
答案 0 :(得分:3)
对左侧data.frame而不是[
提取使用$
提取:
df[,c('NewX2','NewY2')] <- mapply(find.key,
list(df$x, df$y),
list(x2, y2),
SIMPLIFY=FALSE)
# df
# x y NewX2 NewY2
# 1 a e Alpha Epi
# 2 b f Beta OtherY
# 3 c g Other OtherY
# 4 d h Other OtherY
或者,如果您不想写mapply
,可以使用Vectorize
,这将为您创建基于mapply
的功能,以获得相同的结果:
find.keys <- Vectorize(find.key, c("x","li"), SIMPLIFY=FALSE)
df[,c('NewX2','NewY2')] <- find.keys(list(df$x, df$y), list(x2, y2))
df
# x y NewX2 NewY2
# 1 a e Alpha Epi
# 2 b f Beta OtherY
# 3 c g Other OtherY
# 4 d h Other OtherY