我正在尝试实现真正高效的Clojure函数来计算Damerau-Levenshtein distance。我已决定使用this algorithm(附加源应该是C ++)来计算Levenshtein距离并添加一些行以使其适用于DLD。
以下是我在Common Lisp中创建的内容(我希望它可以提供帮助):
(defun damerau-levenshtein (x y)
(declare (type string x y)
#.*std-opts*)
(let* ((x-len (length x))
(y-len (length y))
(v0 (apply #'vector (mapa-b #'identity 0 y-len)))
(v1 (make-array (1+ y-len) :element-type 'integer))
(v* (make-array (1+ y-len) :element-type 'integer)))
(do ((i 0 (1+ i)))
((= i x-len) (aref v0 y-len))
(setf (aref v1 0) (1+ i))
(do ((j 0 (1+ j)))
((= j y-len))
(let* ((x-i (char x i))
(y-j (char y j))
(cost (if (char-equal x-i y-j) 0 1)))
(setf (aref v1 (1+ j)) (min (1+ (aref v1 j))
(1+ (aref v0 (1+ j)))
(+ (aref v0 j) cost)))
(when (and (plusp i) (plusp j))
(let ((x-i-1 (char x (1- i)))
(y-j-1 (char y (1- j)))
(val (+ (aref v* (1- j)) cost)))
(when (and (char-equal x-i y-j-1)
(char-equal x-i-1 y-j)
(< val (aref v1 (1+ j))))
(setf (aref v1 (1+ j)) val))))))
(rotatef v* v0 v1))))
现在,我担心我无法将其翻译成真正高效且惯用的Clojure代码(功能样式?)。我真的很感激任何建议,我认为它对许多未来的读者也很有用。
P.S。我找到了this implementation,但我怀疑它是否有效并且它使用了一些过时的contrib
函数(deep-merge-with
和bool-to-binary
):
(defn damerau-levenshtein-distance
[a b]
(let [m (count a)
n (count b)
init (apply deep-merge-with (fn [a b] b)
(concat
;;deletion
(for [i (range 0 (+ 1 m))]
{i {0 i}})
;;insertion
(for [j (range 0 (+ 1 n))]
{0 {j j}})))
table (reduce
(fn [d [i j]]
(deep-merge-with
(fn [a b] b)
d
(let [cost (bool-to-binary (not (= (nth a (- i 1))
(nth b (- j 1)))))
x
(min
(+ ((d (- i 1))
j) 1) ;;deletion
(+ ((d i)
(- j 1)) 1) ;;insertion
(+ ((d (- i 1))
(- j 1)) cost)) ;;substitution))
val (if (and (> i 1)
(> j 1)
(= (nth a (- i 1))
(nth b (- j 2)))
(= (nth a (- i 2))
(nth b (- j 1))))
(min x (+ ((d (- i 2))
(- j 2)) ;;transposition
cost))
x)]
{i {j val}})))
init
(for [j (range 1 (+ 1 n))
i (range 1 (+ 1 m))] [i j]))]
((table m) n)))
答案 0 :(得分:2)
我最近不得不在clojure中编写一个有效的levenshtein距离函数来计算地面实况文本和ocr引擎结果之间的编辑。 递归实现的性能不足以快速计算两个整页之间的levenshtein距离,因此我的实现使用动态编程。 它不是下载到java 2d-arrays而是使用core.matrix来处理矩阵内容。 添加damerau-levenshtein的转置内容应该不难。
(defn lev [str1 str2]
(let [mat (new-matrix :ndarray (inc (count str1)) (inc (count str2)))
len1 (count str1) len2 (count str2)]
(mset! mat 0 0 0)
(dotimes [i lein1]
(mset! mat (inc i) 0 (inc i)))
(dotimes [j len2]
(mset! mat 0 (inc j) (inc j)))
(dotimes [dj len2]
(dotimes [di len1]
(let [j (inc dj) i (inc di)]
(mset! mat i j
(cond
(= (.charAt ^String str1 di) (.charAt ^String str2 dj))
(mget mat di dj)
:else
(min (inc (mget mat di j)) (inc (mget mat i dj))
(inc (mget mat di dj))))))))
(mget mat len1 len2))))
希望这有帮助
答案 1 :(得分:1)
好的,这应该可以解决问题(基于KIMA's answer):
(defn da-lev [str1 str2]
(let [l1 (count str1)
l2 (count str2)
mx (new-matrix :ndarray (inc l1) (inc l2))]
(mset! mx 0 0 0)
(dotimes [i l1]
(mset! mx (inc i) 0 (inc i)))
(dotimes [j l2]
(mset! mx 0 (inc j) (inc j)))
(dotimes [i l1]
(dotimes [j l2]
(let [i+ (inc i) j+ (inc j)
i- (dec i) j- (dec j)
cost (if (= (.charAt str1 i)
(.charAt str2 j))
0 1)]
(mset! mx i+ j+
(min (inc (mget mx i j+))
(inc (mget mx i+ j))
(+ (mget mx i j) cost)))
(if (and (pos? i) (pos? j)
(= (.charAt str1 i)
(.charAt str2 j-))
(= (.charAt str1 i-)
(.charAt str2 j)))
(mset! mx i+ j+
(min (mget mx i+ j+)
(+ (mget mx i- j-) cost)))))))
(mget mx l1 l2)))
请注意,您需要core.matrix
库,这不是标准的(尽管它的名称)。可以用Leiningen这样安装它:
[net.mikera/core.matrix "0.29.1"]
该库位于名称空间clojure.core.matrix
中。要“按原样”使用此解决方案,您应该将命名空间中的符号添加到命名空间中。