协助R错误消息

时间:2014-08-25 14:44:32

标签: r plot data-fitting

我试图从障碍回归模型的计数部分绘制拟合负二项式结果。 数据(可重复的子集):

        Age     gender familysupport    bullying     Suicide. SuicideBinary NegBinSuicide
1   -0.771845      0       at risk    -0.34840000        1             1             1
2    0.228155      0       at risk     0.05160000        0             0            NA
3    0.228155      0     resilient     0.45160000        1             1             1
4    4.228155      0     resilient     0.25160000        0             0            NA
5   -2.771845      1     resilient    -0.44840000        0             0            NA
6   -2.771845      0       at risk    -0.64840000        0             0            NA
7   -0.771845      0     resilient    -0.04840000        0             0            NA
8   -0.771845      0     resilient    -0.14840000        0             0            NA
9   -0.771845      1       at risk    -0.64840000        0             0            NA
10   0.228155      0       at risk     0.05160000        0             0            NA
11   0.228155      0       at risk    -0.24840000        0             0            NA
12  -2.771845      0       at risk     0.15160000        0             0            NA
13  -0.771845      0     resilient    -0.14840000        0             0            NA
14  -1.771845      0       at risk    -0.44840000        0             0            NA
15   4.228155      0       at risk    -0.24840000        2             1             2
16   0.228155      0     resilient     0.05160000        1             1             1
17  -2.771845      0     resilient     0.05160000        0             0            NA
18   4.228155      0       at risk    -0.44840000        0             0            NA
19  -2.771845      1       at risk     0.25160000        0             0            NA
20  -1.771845      1       at risk    -0.54840000        0             0            NA
21  -0.771845      0     resilient    -0.14840000        0             0            NA
22  -0.771845      0       at risk    -0.34840000        0             0            NA
23  -2.771845      0     resilient    -0.14840000        0             0            NA
24   0.228155      1     resilient    -0.44840000        0             0            NA
25   0.228155      0       at risk    -0.14840000        2             1             2
26  -0.771845      0       at risk     1.95160000        0             0            NA
27  -2.771845      1       at risk    -0.44840000        1             1             1
28  -1.771845      0       at risk    -0.04840000        0             0            NA
29   2.228155      0     resilient    -0.44840000        0             0            NA
30  -0.771845      0       at risk    -0.34840000        0             0            NA
31   4.228155      0       at risk     0.15160000        4             1             4
32  -0.771845      1     resilient     0.15160000        1             1             1
33   0.228155      0     resilient     0.45160000        0             0            NA
34  -0.771845      0       at risk     0.15160000        0             0            NA
35  -0.771845      0       at risk    -0.04840000        0             0            NA
36   4.228155      0     resilient    -0.54840000        0             0            NA
37   0.228155      0     resilient     0.05160000        0             0            NA
38   1.228155      0       at risk    -0.34840000        1             1             1
39   2.228155      0       at risk     0.25160000        0             0            NA
40  -2.771845      0       at risk    -0.34840000        1             1             1
41   0.228155      0       at risk     1.75160000        2             1             2
42   4.228155      0       at risk     0.65160000        0             0            NA
43   0.228155      0     resilient     0.25160000       NA            NA            NA
44  -1.771845      0     resilient    -0.24840000        0             0            NA
45  -2.771845      0       at risk    -0.04840000        3             1             3
46  -0.771845      0     resilient     0.25160000        0             0            NA
47   3.228155      0     resilient     0.45160000        0             0            NA
48  -0.771845      0     resilient     0.85160000        0             0            NA
49  -2.771845      1       at risk     0.25160000        2             1             2
50  -0.771845      0       at risk     0.15160000        0             0            NA
51   1.228155      0     resilient    -0.44840000        0             0            NA
52   0.228155      0       at risk    -0.34840000        0             0            NA
53  -2.771845      0       at risk    -0.64840000       NA            NA            NA
54  -1.771845      0       at risk    -0.14840000        6             1             6
55   1.228155      0       at risk    -0.64840000        3             1             3
56   0.228155      0     resilient    -0.64840000        0             0            NA
57   2.228155      0     resilient    -0.64840000        0             0            NA
58   1.228155      0     resilient     1.05160000        0             0            NA
59   0.228155      0       at risk     0.25160000        0             0            NA
60  -0.771845      0       at risk     0.15160000        0             0            NA
61  -1.771845      0     resilient    -0.64840000        0             0            NA
62   1.228155      0       at risk    -0.44840000        0             0            NA
63   1.228155      0       at risk    -0.64840000        0             0            NA
64  -0.771845      0     resilient    -0.04840000        0             0            NA
65  -2.771845      0       at risk    -0.64840000        0             0            NA
66   1.228155      0       at risk     0.15160000        2             1             2
67   2.228155     NA     resilient    -0.64840000        0             0            NA
68   0.228155      0       at risk    -0.04840000       NA            NA            NA
69  -0.771845      0       at risk     0.05160000        0             0            NA
70  -0.771845      0       at risk    -0.64840000        0             0            NA
71  -0.771845      0     resilient    -0.64840000        0             0            NA
72  -0.771845      1       at risk     2.05160000       50             1            50
73   0.228155      0     resilient    -0.44840000        0             0            NA
74   1.228155      0     resilient     2.95160000        0             0            NA
75   0.228155      0     resilient     1.25160000        3             1             3
76   1.228155      0       at risk     0.45160000        2             1             2
77   0.228155      0     resilient             NA        0             0            NA
78   2.228155      0       at risk    -0.04840000        0             0            NA
79   2.228155      0       at risk    -0.64840000        2             1             2
80   0.228155      1     resilient     0.35160000        0             0            NA
81  -0.771845      0     resilient     0.25160000        2             1             2
82  -1.771845      1     resilient    -0.44840000        0             0            NA
83   0.228155      0       at risk    -0.64840000        0             0            NA
84   2.228155      0     resilient     0.01826667        0             0            NA
85   4.228155      0     resilient    -0.14840000        0             0            NA
86  -2.771845      0       at risk     0.25160000        0             0            NA
87   0.228155      0       at risk    -0.42617778        1             1             1
88   1.228155      0     resilient    -0.64840000        0             0            NA
89   0.228155      0     resilient    -0.04840000        0             0            NA
90   0.228155      0     resilient     0.15160000        0             0            NA
91   0.228155      0       at risk    -0.64840000        1             1             1
92   0.228155      0       at risk    -0.64840000        0             0            NA
93   4.228155      0     resilient    -0.34840000        0             0            NA
94   4.228155      0     resilient    -0.54840000        0             0            NA
95   1.228155      0     resilient     0.75160000        0             0            NA
96   3.228155      0       at risk    -0.24840000        0             0            NA
97  -2.771845      0     resilient    -0.64840000        0             0            NA
98  -1.771845      0     resilient     0.25160000        0             0            NA
99  -2.771845      0     resilient     0.35160000        2             1             2
100 -1.771845      0       at risk    -0.64840000        0             0            NA

但是,当我使用以下代码时:

library(VGAM)
##model
mod <- vglm(NegBinSuicide ~ Age + gender + bullying*familysupport, family=posnegbinomial())

library(visreg)
##plot with INTERACTION TERM
visreg(mod, "bullying", by="familysupport", xlab = "bullying", ylab = "Count model (number of suicide attempts)")

我收到以下错误消息:

Error: $ operator not defined for this S4 class

我不确定这意味着什么。任何人都可以提供有关如何解决这个问题的见解吗?

最终,我正在尝试为两个组件绘制障碍回归输出,因为我的交互项在每个组件中都很重要。 (可能没有给出上面的样本数据)

library(pscl)
##Model
FullModel <- hurdle(Suicide. ~ Age + gender + bullying*familysupport | Age + gender + bullying*familysupport, dist = "negbin", link = "logit")

我想为每个障碍组件创建单独的图。我已经能够使用MASS中glm中的数据(它产生与障碍模型的logit部分相同的逻辑结果)在visreg中的logit部分(单独估计),但是使用glm.nb作为NB部分产生了不同的估计因此我决定从VGAM切换到vglm - 估计与障碍相同,但出现了绘图错误。

任何有关如何解决错误或如何绘制这些数据的见解都将非常感激。

1 个答案:

答案 0 :(得分:1)

我怀疑visreg包不支持VGAM::vglm?visreg的帮助页面显示:

  

fit:您希望可视化的拟合模型对象。任何对象             使用'predict'和'model.frame'方法,             包括lm,glm,gam,rlm,coxph等等。

知道pscl包具有良好支持的负二项式障碍模型,我试过这个:

library(pscl)
## using the built-in "bioChemists" data set
hh <- hurdle(art~fem+mar,dist="negbin",data=bioChemists)
library(visreg)
visreg(hh)

似乎工作正常,可能适用于您的情况。

enter image description here