Python巨大的文件阅读

时间:2014-08-20 18:39:20

标签: python file

我需要使用Python脚本逐行读取大数据文件(~200GB)。

我尝试过逐行方法,但这些方法使用了大量内存。我希望能够通过块读取文件块。

是否有更好的方法逐行加载大文件,比如说

a)明确提到文件在内存中任何时候都可以加载的最大行数?要么 b)通过大小的块(例如1024字节)加载它,只要所述块的最后一行加载完全没有被截断?

2 个答案:

答案 0 :(得分:2)

不要一次阅读所有内容,请尝试逐行阅读:

with open("myFile.txt") as f:
    for line in f:
        #Do stuff with your line

或者,如果您想一次读取N行:

with open("myFile.txt") as myfile:
    head = [next(myfile) for x in xrange(N)]
    print head

要处理来自命中文件末尾的StopIteration错误,这是一个简单的try/catch(虽然有很多方法)。

try:
    head = [next(myfile) for x in xrange(N)]
except StopIteration:
    rest_of_lines = [line for line in myfile]

或者您可以随意阅读最后一行。

答案 1 :(得分:0)

要遍历文件的行,不要使用readlines。相反,迭代文件本身(您将找到使用xreadlines的版本 - 已弃用并且只返回文件对象本身)或:

with open(the_path, 'r') as the_file:
    for line in the_file:
        # Do stuff with the line

要一次读取多行,可以在文件上使用next(它是迭代器),但需要捕获StopIteration,表示没有数据:< / p>

with open(the_path, 'r') as the_file:
    the_lines = []
    done = False
    for i in range(number_of_lines): # Use xrange on Python 2
        try:
            the_lines.append(next(the_file))
        except StopIteration:
            done = True # Reached end of file
    # Do stuff with the lines
    if done:
        break # No data left

当然,您也可以使用指定字节数的块加载文件:

with open(the_path, 'r') as the_file:
    while True:
        data = the_file.read(the_byte_count)
        if len(data) == 0:
            # All data is gone
            break
        # Do stuff with the data chunk