如何使用Map / Reduce与MongoDB分组多个密钥?发出多个键?

时间:2014-08-20 03:01:00

标签: mongodb mapreduce mongoid mongodb-query aggregation-framework

在我的Rails 3.2项目中,我使用MongoDB(Mongoid)使用map / reduce对某些结果进行分组,例如:

  def count_and_group_by(context)
    raise "No #{context} attribute" unless %w(action browser country).include? context

    map = %Q{
      function() {
        key = this.#{context};
        value = {count: 1};
        emit(key, value);
      }
    }

    reduce = %Q{
      function(key, values) {
        var reducedValue = {count: 0};
        values.forEach(function(value) {
          reducedValue.count += value.count; 
        });
        return reducedValue;
      }
    }

    map_reduce = self.map_reduce(map, reduce).out(inline: true)

    Hash[map_reduce.map {|v| [v["_id"],v["value"]["count"].to_i]}]
  end  

一旦我使用MyClass.count_and_group_by("action")之类的方法,我会得到以下格式的结果:

{"change_password"=>31, "invalid_ip"=>32, "login_failure"=>74, "login_success"=>63, "logout"=>34}

现在我通常做的是尝试根据属性对结果进行分组,比如找到基于 action 属性,浏览器 city 属性,我会分别为每个属性执行新的调用,例如:MyClass.count_and_group_by("action")MyClass.count_and_group_by("browser")MyClass.count_and_group_by("city")

有没有一次发出多个键,所以我可以立即对结果进行分组,得到如下结果:

{"action" => { 
  "change_password"=>31, 
  "invalid_ip"=>32, 
  "login_failure"=>74, 
  "login_success"=>63, 
  "logout"=>34},
 "browser" => {}
 "city" => {}}

任何帮助都将受到高度赞赏。

干杯

1 个答案:

答案 0 :(得分:3)

通常应该可以,但实际上对于这种类型的操作,您将获得更多使用聚合框架的性能。目前还没有"聚合"使用Mongoid定义的类的方法,但有一个.collection访问器,它公开底层的驱动程序对象。所以你可以从这里打电话给.aggregate()

result = this.collection.aggregate([

    # Include each field and an array for "type" in all documents
    { "$project" => {
        "action" => 1,
        "browser" => 1,
        "country" => 1,
        "type" => { "$const" => [ "action", "browser", "country" ] },
    }},

    # Unwind that "type" array
    { "$unwind" => "$type" },

    # Group by "type" and the values of each field which matches
    { "$group" => {
        "_id" => {
            "type" => "$type",
            "value" => {
                "$cond" => [
                    { "$eq" => [ "$type", "action" ] },
                    "$action",
                    { "$cond" => [ 
                        { "$eq" => [ "$type", "browser" ] },
                        "$browser",
                        "$country"
                    ]}
                ]
            }
        },
        "count" => { "$sum" => 1 }
    }},

    # Just in case all fields were not present in all documents
    { "$match" => { "_id.value" => { "$ne" => null } } },

    # Group to a single document with each "type" as the keys
    { "$group" => {
        "_id" => null,
        "action" => { 
           "$addToSet" => {
               "$cond" => [
                   { "$eq" => [ "$_id.type", "action" ] },
                   { "value" => "$_id.value", "count": "$count" },
                   null
               ]
           }
       },
       "browser" => {
           "$addToSet" => {
               "$cond" => [
                   { "$eq" => [ "$_id.type", "browser" ] },
                   { "value" => "$_id.value", "count": "$count" },
                   null
               ]
           }
       },
       "country" => {
           "$addToSet" => {
               "$cond" => [
                   { "$eq" => [ "$_id.type", "country" ] },
                   { "value" => "$_id.value", "count": "$count" },
                   null
               ]
           }
       }
   }},

   # Filter out any null values from the conditional allocation
   { "$project" => {
       "action" => { "$setDifference" => [ "$action", [null] ] },
       "browser" => { "$setDifference" => [ "$browser", [null] ] },
       "country" => { "$setDifference" => [ "$country", [null] ] }
   }}
])

使用较新的MongoDB 2.6引入的$setDifference运算符,以便从结果数组中过滤掉任何空值。同样的事情可以用以前的版本完成,对处理的影响很小,只需要更多的步骤:

result = this.collection.aggregate([

    # Include each field and an array for "type" in all documents
    { "$project" => {
        "action" => 1,
        "browser" => 1,
        "country" => 1,
        "type" => { "$const" => [ "action", "browser", "country" ] },
    }},

    # Unwind that "type" array
    { "$unwind" => "$type" },

    # Group by "type" and the values of each field which matches
    { "$group" => {
        "_id" => {
            "type" => "$type",
            "value" => {
                "$cond" => [
                    { "$eq" => [ "$type", "action" ] },
                    "$action",
                    { "$cond" => [ 
                        { "$eq" => [ "$type", "browser" ] },
                        "$browser",
                        "$country"
                    ]}
                ]
            }
        },
        "count" => { "$sum" => 1 }
    }},

    # Just in case all fields were not present in all documents
    { "$match" => { "_id.value" => { "$ne" => null } } },

    # Group to a single document with each "type" as the keys
    { "$group" => {
        "_id" => null,
        "action" => { 
           "$addToSet" => {
               "$cond" => [
                   { "$eq" => [ "$_id.type", "action" ] },
                   { "value" => "$_id.value", "count": "$count" },
                   null
               ]
           }
       },
       "browser" => {
           "$addToSet" => {
               "$cond" => [
                   { "$eq" => [ "$_id.type", "browser" ] },
                   { "value" => "$_id.value", "count": "$count" },
                   null
               ]
           }
       },
       "country" => {
           "$addToSet" => {
               "$cond" => [
                   { "$eq" => [ "$_id.type", "country" ] },
                   { "value" => "$_id.value", "count": "$count" },
                   null
               ]
           }
       }
   }},

   # Filter out any null values from the conditional allocation
   { "$unwind": "$country" },
   { "$match": { "country": { "$ne": null } } },
   { "$group": {
       "_id": "$_id",
       "action": { "$first": "$action" },
       "browser": { "$first": "$browser" },
       "country": { "$push": "$country" }
   }},
   { "$unwind": "$browser" },
   { "$match": { "browser": { "$ne": null } } },
   { "$group": {
       "_id": "$_id",
       "action": { "$first": "$action" },
       "browser": { "$push": "$browser" },
       "country": { "$first": "$country" }
   }},
   { "$unwind": "$action" },
   { "$match": { "action": { "$ne": null } } },
   { "$group": {
       "_id": "$_id",
       "action": { "$push": "$action" },
       "browser": { "$first": "$browser" },
       "country": { "$first": "$country" }
   }}
])

输出与键/值形式略有不同,但可以轻松地将其操作为与您目前正在进行的后处理相同的处理。所以输入如下:

{ "action" : "change_password", "browser" : "ie", "country" : "US" }
{ "action" : "change_password", "browser" : "ie", "country" : "UK" }
{ "action" : "change_password", "browser" : "chrome", "country" : "AU" }

获得的结果如下:

{
    "_id" : null,
    "action" : [
        {
            "value" : "change_password",
            "count" : 3
        }
    ],
    "browser" : [
        {
            "value" : "ie",
            "count" : 2
        },
        {
            "value" : "chrome",
            "count" : 1
        }
    ],
    "country" : [
        {
            "value" : "US",
            "count" : 1
        },
        {
            "value" : "UK",
            "count" : 1
        },
        {
            "value" : "AU",
            "count" : 1
        }
    ]
}

所以你对mapReduce的输出有一些区别,但是再次mapReduce的输出也是"不完全是"无论如何你想要输出格式。在本机代码中实现,聚合框架运行得更快