我在scikit-learn中学习曲线生成时遇到了一个特别奇怪的问题。随后运行生成学习曲线的脚本会返回相同的结果。如果我更改了ShuffleSplit对象或学习曲线对象的任何参数,我将在运行之间得到不同的结果。但如果我将这些参数保持不变,输出将是相同的。
我将ShuffleSplit对象设置为10%用于训练,10%用于测试和3次迭代。我这样做是为了避免培训/测试装置的内容即使按不同的顺序排列也是相同的。 ShuffleSplit应该采用随机索引来生成每个集合(我已经验证它是这样做的)。因此,如果训练集在后续运行中有所不同,即使是轻微的,贝叶斯模型应该有不同的训练和测试错误,对吗?
几乎看起来好像是在缓存分数,直到ShuffleSplit对象或learning_curve方法的参数,它只返回缓存的结果。我想不出任何其他解释。任何想法??
以下是该问题的简化示例,基于http://scikit-learn.org/stable/auto_examples/plot_learning_curve.html处的scikit-learn示例代码和数据集:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_digits
from sklearn.learning_curve import learning_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
digits = load_digits()
X, y = digits.data, digits.target
title = "Learning Curves (Naive Bayes)"
cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=3,
train_size=0.2, test_size=0.1,
random_state=0)
estimator = GaussianNB()
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=1)
plt.show()
答案 0 :(得分:3)
您可以使用关键字参数ShuffleSplit
主动更改random_state
对象的随机种子。
from sklearn.cross_validation import ShuffleSplit
cv = ShuffleSplit(n_samples, n_iter=10, test_size=.1, random_state=42)
每次创建cv对象时都要更改它,您应该获得不同的结果。