用Numpy和Cython加速距离矩阵计算

时间:2014-08-08 23:18:12

标签: python performance optimization numpy cython

考虑维数NxM的numpy数组A.目标是计算欧几里德距离矩阵D,其中每个元素D [i,j]是行i和j之间的核心距离。这样做的最快方法是什么?这不是我需要解决的问题,但它是我正在尝试做的一个很好的例子(通常,可以使用其他距离度量)。

这是迄今为止我能想到的最快的:

n = A.shape[0]
D = np.empty((n,n))
for i in range(n):
    D[i] = np.sqrt(np.square(A-A[i]).sum(1))

但这是最快的方式吗?我主要关注for循环。我们可以用Cython打败这个吗?

为了避免循环,我尝试使用广播,并执行以下操作:

D = np.sqrt(np.square(A[np.newaxis,:,:]-A[:,np.newaxis,:]).sum(2))

但事实证明这是一个坏主意,因为构建维度NxNxM的中间3D数组会产生一些开销,因此性能更差。

我试过Cython。但我是Cython的新手,所以我不知道我的尝试有多好:

def dist(np.ndarray[np.int32_t, ndim=2] A):
    cdef int n = A.shape[0]    
    cdef np.ndarray[np.float64_t, ndim=2] dm = np.empty((n,n), dtype=np.float64)      
    cdef int i = 0    
    for i in range(n):  
        dm[i] = np.sqrt(np.square(A-A[i]).sum(1)).astype(np.float64)              
    return dm 

上面的代码比Python的for循环慢一点。我对Cython知之甚少,但我认为我可以达到至少与for loop + numpy相同的性能。我想知道在正确的方式下是否有可能实现一些显着的性能提升?或者是否有其他方法可以加快速度(不涉及并行计算)?

1 个答案:

答案 0 :(得分:8)

Cython的关键是避免尽可能多地使用Python对象和函数调用,包括对numpy数组的向量化操作。这通常意味着手动写出所有循环并一次操作单个数组元素。

有一个very useful tutorial here涵盖了将numpy代码转换为Cython并对其进行优化的过程。

这是对距离函数更优化的Cython版本的快速刺激:

import numpy as np
cimport numpy as np
cimport cython

# don't use np.sqrt - the sqrt function from the C standard library is much
# faster
from libc.math cimport sqrt

# disable checks that ensure that array indices don't go out of bounds. this is
# faster, but you'll get a segfault if you mess up your indexing.
@cython.boundscheck(False)
# this disables 'wraparound' indexing from the end of the array using negative
# indices.
@cython.wraparound(False)
def dist(double [:, :] A):

    # declare C types for as many of our variables as possible. note that we
    # don't necessarily need to assign a value to them at declaration time.
    cdef:
        # Py_ssize_t is just a special platform-specific type for indices
        Py_ssize_t nrow = A.shape[0]
        Py_ssize_t ncol = A.shape[1]
        Py_ssize_t ii, jj, kk

        # this line is particularly expensive, since creating a numpy array
        # involves unavoidable Python API overhead
        np.ndarray[np.float64_t, ndim=2] D = np.zeros((nrow, nrow), np.double)

        double tmpss, diff

    # another advantage of using Cython rather than broadcasting is that we can
    # exploit the symmetry of D by only looping over its upper triangle
    for ii in range(nrow):
        for jj in range(ii + 1, nrow):
            # we use tmpss to accumulate the SSD over each pair of rows
            tmpss = 0
            for kk in range(ncol):
                diff = A[ii, kk] - A[jj, kk]
                tmpss += diff * diff
            tmpss = sqrt(tmpss)
            D[ii, jj] = tmpss
            D[jj, ii] = tmpss  # because D is symmetric

    return D

我将其保存在名为fastdist.pyx的文件中。我们可以使用pyximport来简化构建过程:

import pyximport
pyximport.install()
import fastdist
import numpy as np

A = np.random.randn(100, 200)

D1 = np.sqrt(np.square(A[np.newaxis,:,:]-A[:,np.newaxis,:]).sum(2))
D2 = fastdist.dist(A)

print np.allclose(D1, D2)
# True

至少它起作用了。让我们使用%timeit魔法进行一些基准测试:

%timeit np.sqrt(np.square(A[np.newaxis,:,:]-A[:,np.newaxis,:]).sum(2))
# 100 loops, best of 3: 10.6 ms per loop

%timeit fastdist.dist(A)
# 100 loops, best of 3: 1.21 ms per loop

加速速度提高了~9倍,但并不是真的改变游戏规则。正如你所说,广播方法的最大问题是构建中间阵列的内存要求。

A2 = np.random.randn(1000, 2000)
%timeit fastdist.dist(A2)
# 1 loops, best of 3: 1.36 s per loop

我不建议尝试使用广播......

我们可以做的另一件事是使用prange函数在最外层循环上对此进行并行化:

from cython.parallel cimport prange

...

for ii in prange(nrow, nogil=True, schedule='guided'):
...

为了编译并行版本,您需要告诉编译器启用OpenMP。我还没有弄清楚如何使用pyximport执行此操作,但如果您使用gcc,则可以手动编译它:

$ cython fastdist.pyx
$ gcc -shared -pthread -fPIC -fwrapv -fopenmp -O3 \
   -Wall -fno-strict-aliasing  -I/usr/include/python2.7 -o fastdist.so fastdist.c

使用并行性,使用8个线程:

%timeit D2 = fastdist.dist_parallel(A2)
1 loops, best of 3: 509 ms per loop