我想知道如果数组的大小是随机的,我可以循环通过一个二维数组,例如6x6或10x10等。想法是搜索四个相同类型的字符,' x&# 39;或者' o'。这通常是棋盘游戏所必需的。
int main() {
int array_size = 5; // Size of array
int array_height = array_size;
bool turn = true; // true = player 1, false = player 2
bool there_is_a_winner = false;
char** p_connect_four = new char*[array_size];
for (int i = 0; i < array_size; i++) // Initialise the 2D array
{ // At the same time set a value "_" as blank field
p_connect_four[i] = new char[array_size];
for (int j = 0; j < array_size; j++) {
p_connect_four[i][j] = '_';
}
}
}
这是我到目前为止,检查从[3] [0]到[0] [3]。但这需要我再添加2个循环来检查[4] [0]到[0] [4]和[4] [1]到[1] [4]如果电路板的大小是5x5。
for (int i = 3, j = 0; i > 0 && j < array_size; i--, j++ ) {// CHECK DOWN up right from 3,0 -> 0,3
if (p_connect_four[i][j] == p_connect_four[i - 1][j + 1] && p_connect_four[i][j] != '_' ) {
check_diagonalRight++;
if (check_diagonalRight == 3) {
there_is_a_winner = true;
break;
}
}
else {
check_diagonalRight = 0;
}
}
if (there_is_a_winner) { // Break while loop of game.
break;
}
显然,无论电路板的尺寸如何,我都要沿着对角线检查整个电路板。除了有3个单独的for循环进行检查之外,还有其他方法 [3] [0] - &gt; [0] [3],[4] [0] - &gt; [0] [4]和[4] [1] - &gt; [1] [4]?
答案 0 :(得分:1)
for (i = array_size - 1, j = array_size - 2;
i < array_size && i >= 0, j < array_size && j >= 0; j--)
{ // starts from [4][3] and loops to the left if arraysize = 5x5
// but works on any size
int k = i, l = j;
for (k, l; k < array_size && k > 0, l < array_size && l > 0; k--, l++)
{ // checks diagonally to the right
if (check_diagonalRight == 3)
{
there_is_a_winner = true;
break;
}
if (p_connect_four[k][l] == p_connect_four[k - 1][l + 1] &&
p_connect_four[k][l] != '_')
{ //check up one square and right one square
check_diagonalRight++;
}
else
{
check_diagonalRight = 0;
// if its not equal, reset counter.
}
}
if (there_is_a_winner)
{
break; // break for loop
}
}
if (there_is_a_winner)
{
break; // break while loop of game
}
无论大小如何,都可以向上检查,也可以在其他角度进行检查,它适用于任何板尺寸。您可以使用嵌套循环一次检查左右对角线。
答案 1 :(得分:0)
这对你的程序来说非常合适!希望如此!
int arraySize = 8;
for(int i=0, j=0; i<arraySize && j<arraySize; i++, j++)
{
if((i == 0 && j == 0) || (i == arraySize - 1 && j == arraySize - 1))
{
continue;
}
else
{
int k = i;
int l = j;
//This Loop will check from central line (principal diagonal) to up right side (like slash sign / (representing direction))
for(k, l; k>0 && l < arraySize - 1; k--, l++)
{
//Here check your condition and increment to your variable. like:
if (p_connect_four[k][l] == p_connect_four[k - 1][l + 1] && p_connect_four[k][l] != '_' )
{
check_diagonalRight++;
}
}
//You can break the loop here if check_diagonalRight != k then break
k = i;
l = j;
//This Loop will check from central line (principal diagonal) to down left side (like slash sign / (representing direction))
for(k, l; k<arraySize - 1 && l > 0; k++, l--)
{
//Here check your condition and increment to your variable. like:
if (p_connect_four[k][l] == p_connect_four[k + 1][l - 1] && p_connect_four[k][l] != '_' )
{
check_diagonalRight++;
}
}
if(check_diagonalRight == i+j+1)
{
there_is_a_winner = true;
break;
}
}
}
答案 2 :(得分:0)
我建议用额外的特殊情况围绕你的电路板以避免检查绑定。
为了测试每个方向,我建议使用一个偏移数组来应用。
以下可能会有所帮助:
#include <vector>
using board_t = std::vector<std::vector<char>>;
constexpr const std::size_t MaxAlignment = 4;
enum Case {
Empty = '_',
X = 'X',
O = 'O',
Bound = '.'
};
enum class AlignmentResult { X, O, None };
// Create a new board, valid index would be [1; size] because of surrounding.
board_t new_board(std::size_t size)
{
// Create an empty board
board_t board(size + 2, std::vector<char>(size + 2, Case::Empty));
// Add special surround.
for (std::size_t i = 0; i != size + 2; ++i) {
board[0][i] = Case::Bound;
board[size + 1][i] = Case::Bound;
board[i][0] = Case::Bound;
board[i][size + 1] = Case::Bound;
}
return board_t;
}
// Test a winner from position in given direction.
AlignmentResult test(
const board_t& board,
std::size_t x, std::size_t y,
int offset_x, int offset_y)
{
if (board[x][y] == Case::Empty) {
return AlignmentResult::None;
}
for (std::size_t i = 1; i != MaxAlignment; ++i) {
// Following condition fails when going 'out of bound' thanks to Case::Bound,
// else you have also to check size...
if (board[x][y] != board[x + i * offset_x][y + i * offset_y]) {
return AlignmentResult::None;
}
}
if (board[x][y] == Case::X) {
return AlignmentResult::X;
} else {
return AlignmentResult::O;
}
}
// Test a winner on all the board
AlignmentResult test(const board_t& board)
{
// offset for direction. Use only 4 direction because of the symmetry.
const int offsets_x[] = {1, 1, 1, 0};
const int offsets_y[] = {-1, 0, 1, 1};
const std::size_t size = board.size() - 1;
for (std::size_t x = 1; x != size; ++x) {
for (std::size_t y = 1; y != size; ++y) {
for (std::size_t dir = 0; dir != 4; ++dir) { // for each directions
auto res = test(board, x, y, offsets_x[dir], offsets_y[y]);
if (res != AlignmentResult::None) {
return res;
}
}
}
}
return AlignmentResult::None;
}