给定时间表示中的信号图,如何绘制标记相应时间索引的线?
具体来说,给定时间索引范围为0到2.6(s)的信号图,我想绘制垂直红线,表示列表[0.22058956, 0.33088437, 2.20589566]
的相应时间索引,我该怎么办?
答案 0 :(得分:319)
添加垂直线条以覆盖整个绘图窗口而不必指定其实际高度的标准方法是plt.axvline
import matplotlib.pyplot as plt
plt.axvline(x=0.22058956)
plt.axvline(x=0.33088437)
plt.axvline(x=2.20589566)
OR
xcoords = [0.22058956, 0.33088437, 2.20589566]
for xc in xcoords:
plt.axvline(x=xc)
您可以使用许多可用于其他绘图命令的关键字(例如color
,linestyle
,linewidth
...)。如果你喜欢轴corrdinates,你可以传递关键字参数ymin
和ymax
(例如ymin=0.25
,ymax=0.75
将覆盖图的中间一半)。水平线(axhline
)和矩形(axvspan
)有相应的功能。
答案 1 :(得分:37)
多行
xposition = [0.3, 0.4, 0.45]
for xc in xposition:
plt.axvline(x=xc, color='k', linestyle='--')
答案 2 :(得分:19)
正如其他人所建议的那样,在循环中调用axvline可行,但可能不方便,因为
相反,您可以使用以下便捷函数将所有行创建为单个绘图对象:
import matplotlib.pyplot as plt
import numpy as np
def axhlines(ys, ax=None, **plot_kwargs):
"""
Draw horizontal lines across plot
:param ys: A scalar, list, or 1D array of vertical offsets
:param ax: The axis (or none to use gca)
:param plot_kwargs: Keyword arguments to be passed to plot
:return: The plot object corresponding to the lines.
"""
if ax is None:
ax = plt.gca()
ys = np.array((ys, ) if np.isscalar(ys) else ys, copy=False)
lims = ax.get_xlim()
y_points = np.repeat(ys[:, None], repeats=3, axis=1).flatten()
x_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(ys), axis=0).flatten()
plot = ax.plot(x_points, y_points, scalex = False, **plot_kwargs)
return plot
def axvlines(xs, ax=None, **plot_kwargs):
"""
Draw vertical lines on plot
:param xs: A scalar, list, or 1D array of horizontal offsets
:param ax: The axis (or none to use gca)
:param plot_kwargs: Keyword arguments to be passed to plot
:return: The plot object corresponding to the lines.
"""
if ax is None:
ax = plt.gca()
xs = np.array((xs, ) if np.isscalar(xs) else xs, copy=False)
lims = ax.get_ylim()
x_points = np.repeat(xs[:, None], repeats=3, axis=1).flatten()
y_points = np.repeat(np.array(lims + (np.nan, ))[None, :], repeats=len(xs), axis=0).flatten()
plot = ax.plot(x_points, y_points, scaley = False, **plot_kwargs)
return plot
答案 3 :(得分:10)
legend
和/或colors
,请使用以下方法:import matplotlib.pyplot as plt
xcoords = [0.1, 0.3, 0.5]
colors = ['r','k','b']
for xc,c in zip(xcoords,colors):
plt.axvline(x=xc, label='line at x = {}'.format(xc), c=c)
plt.legend()
plt.show()
结果:
答案 4 :(得分:9)
matplotlib.pyplot.vlines
与matplotlib.pyplot.axvline
vlines
接受x
的1个或多个位置,而axvline
允许一个位置。
x=37
x=[37, 38, 39]
vlines
以ymin
和ymax
作为y轴上的位置,而axvline
以ymin
和ymax
作为百分数y轴范围。
vlines
时,请将list
传递给ymin
和ymax
。fig, ax = plt.subplots()
之类的图形来绘制图形,则分别用plt.vlines
或plt.axvline
替换ax.vlines
或ax.axvline
。import numpy as np
import matplotlib.pyplot as plt
xs = np.linspace(1, 21, 200)
plt.figure(figsize=(10, 7))
# only one line may be specified; full height
plt.axvline(x=36, color='b', label='axvline - full height')
# only one line may be specified; ymin & ymax spedified as a percentage of y-range
plt.axvline(x=36.25, ymin=0.05, ymax=0.95, color='b', label='axvline - % of full height')
# multiple lines all full height
plt.vlines(x=[37, 37.25, 37.5], ymin=0, ymax=len(xs), colors='purple', ls='--', lw=2, label='vline_multiple - full height')
# multiple lines with varying ymin and ymax
plt.vlines(x=[38, 38.25, 38.5], ymin=[0, 25, 75], ymax=[200, 175, 150], colors='teal', ls='--', lw=2, label='vline_multiple - partial height')
# single vline with full ymin and ymax
plt.vlines(x=39, ymin=0, ymax=len(xs), colors='green', ls=':', lw=2, label='vline_single - full height')
# single vline with specific ymin and ymax
plt.vlines(x=39.25, ymin=25, ymax=150, colors='green', ls=':', lw=2, label='vline_single - partial height')
# place legend outside
plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')
plt.show()
答案 5 :(得分:8)
除了以上答案中提供的plt.axvline
和plt.plot((x1, x2), (y1, y2))
或plt.plot([x1, x2], [y1, y2])
之外,还可以使用
plt.vlines(x_pos, ymin=y1, ymax=y2)
在x_pos
上绘制一条从y1
到y2
的垂直线,其中值y1
和y2
在绝对数据坐标中。