我正在尝试编写一个连续时间序列的函数,并返回描述数据中任何缺失空白的数据结构(例如,带有'start'和'end'列的DF)。对于时间序列来说这似乎是一个相当普遍的问题,但是尽管乱搞了groupby,diff等等 - 并且正在探索SO - 我还没有能够提出比下面更好的东西。
对我来说,优先使用矢量化操作以保持高效。使用矢量化操作必须有一个更明显的解决方案 - 不是吗?感谢任何帮助,伙计们。
import pandas as pd
def get_gaps(series):
"""
@param series: a continuous time series of data with the index's freq set
@return: a series where the index is the start of gaps, and the values are
the ends
"""
missing = series.isnull()
different_from_last = missing.diff()
# any row not missing while the last was is a gap end
gap_ends = series[~missing & different_from_last].index
# count the start as different from the last
different_from_last[0] = True
# any row missing while the last wasn't is a gap start
gap_starts = series[missing & different_from_last].index
# check and remedy if series ends with missing data
if len(gap_starts) > len(gap_ends):
gap_ends = gap_ends.append(series.index[-1:] + series.index.freq)
return pd.Series(index=gap_starts, data=gap_ends)
为了记录,Pandas == 0.13.1,Numpy == 1.8.1,Python 2.7
答案 0 :(得分:2)
可以转换此问题以在列表中查找连续数字。找到系列为null的所有索引,如果(3,4,5,6)的运行都为null,则只需要提取开始和结束(3,6)
import numpy as np
import pandas as pd
from operator import itemgetter
from itertools import groupby
# create an example
data = [2, 3, 4, 5, 12, 13, 14, 15, 16, 17]
s = pd.series( data, index=data)
s = s.reindex(xrange(18))
print find_gap(s)
def find_gap(s):
""" just treat it as a list
"""
nullindex = np.where( s.isnull())[0]
ranges = []
for k, g in groupby(enumerate(nullindex), lambda (i,x):i-x):
group = map(itemgetter(1), g)
ranges.append((group[0], group[-1]))
startgap, endgap = zip(* ranges)
return pd.series( endgap, index= startgap )