如果我在R
中有以下数据框date <- rep(seq(as.Date("2013-11-1"),as.Date("2014-6-1"), by = "months"),2)
category <- c(rep("Group 1","8"),rep("Group 2","8"))
x <- c(rnorm(8), rnorm(8))
data.frame(date,category,x)
date category x
1 2013-11-01 Group 1 -0.5511129
2 2013-12-01 Group 1 -0.6640636
3 2014-01-01 Group 1 0.6348586
4 2014-02-01 Group 1 0.2673702
5 2014-03-01 Group 1 0.9949441
6 2014-04-01 Group 1 0.4077544
7 2014-05-01 Group 1 1.8395109
8 2014-06-01 Group 1 -0.4685328
9 2013-11-01 Group 2 -0.7624855
10 2013-12-01 Group 2 -1.1774081
11 2014-01-01 Group 2 -2.5409333
12 2014-02-01 Group 2 0.5013774
13 2014-03-01 Group 2 0.6504688
14 2014-04-01 Group 2 0.2582353
15 2014-05-01 Group 2 0.6385828
16 2014-06-01 Group 2 -0.4358158
如何生成以下输出:
date group 1 group 2
1 2013-11-01 -0.5511129g
2 2013-12-01 -0.6640636
3 2014-01-01 0.6348586
4 2014-02-01 0.2673702 group 2 variable x values here
5 2014-03-01 0.9949441
6 2014-04-01 0.4077544
7 2014-05-01 1.8395109
8 2014-06-01 -0.4685328
我想要的是跨时间的数据帧,第一列是日期,其余列对应于不同组的变量x。 Assumne将会有更多的组和变量。我希望这是有道理的!
答案 0 :(得分:4)
这是您的标准票价&#34;长&#34;到&#34;宽&#34;重塑问题。
从&#34; reshape2&#34;:
查看dcast
set.seed(1)
date <- rep(seq(as.Date("2013-11-1"),as.Date("2014-6-1"), by = "months"),2)
category <- c(rep("Group 1","8"),rep("Group 2","8"))
x <- c(rnorm(8), rnorm(8))
mydf <- data.frame(date,category,x)
library(reshape2)
dcast(mydf, date ~ category)
# Using x as value column: use value.var to override.
# date Group 1 Group 2
# 1 2013-11-01 -0.6264538 0.57578135
# 2 2013-12-01 0.1836433 -0.30538839
# 3 2014-01-01 -0.8356286 1.51178117
# 4 2014-02-01 1.5952808 0.38984324
# 5 2014-03-01 0.3295078 -0.62124058
# 6 2014-04-01 -0.8204684 -2.21469989
# 7 2014-05-01 0.4874291 1.12493092
# 8 2014-06-01 0.7383247 -0.04493361
或者,在基数R中,reshape
:
reshape(mydf, direction = "wide", idvar = "date", timevar = "category")
# date x.Group 1 x.Group 2
# 1 2013-11-01 -0.6264538 0.57578135
# 2 2013-12-01 0.1836433 -0.30538839
# 3 2014-01-01 -0.8356286 1.51178117
# 4 2014-02-01 1.5952808 0.38984324
# 5 2014-03-01 0.3295078 -0.62124058
# 6 2014-04-01 -0.8204684 -2.21469989
# 7 2014-05-01 0.4874291 1.12493092
# 8 2014-06-01 0.7383247 -0.04493361
而且,对于多样性,还有另一种方法: - )
library(dplyr)
library(tidyr)
mydf %>% spread(category, x)