是否存在short-time Fourier transform的通用形式,其中相应的逆变换内置于SciPy或NumPy或其他任何内容中?
matplotlib中有pyplot specgram
函数,调用ax.specgram()
,调用mlab.specgram()
,调用_spectral_helper()
:
#The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t.
但
这是一个帮助函数,实现了它之间的通用性 204 #psd,csd和谱图。它是 NOT 意味着在mlab之外使用
我不确定这是否可用于执行STFT和ISTFT。还有什么,或者我应该翻译these MATLAB functions之类的内容吗?
我知道如何编写自己的临时实现;我只是在寻找功能齐全的东西,它可以处理不同的窗口函数(但是有一个合理的默认值),完全可以与COLA窗口(istft(stft(x))==x
)完全颠倒,由多人测试,没有一个一个错误,处理结束和零填充,实际输入的快速RFFT实现等。
答案 0 :(得分:60)
这是我的Python代码,简化了这个答案:
import scipy, pylab
def stft(x, fs, framesz, hop):
framesamp = int(framesz*fs)
hopsamp = int(hop*fs)
w = scipy.hanning(framesamp)
X = scipy.array([scipy.fft(w*x[i:i+framesamp])
for i in range(0, len(x)-framesamp, hopsamp)])
return X
def istft(X, fs, T, hop):
x = scipy.zeros(T*fs)
framesamp = X.shape[1]
hopsamp = int(hop*fs)
for n,i in enumerate(range(0, len(x)-framesamp, hopsamp)):
x[i:i+framesamp] += scipy.real(scipy.ifft(X[n]))
return x
注意:
blkproc
。我将命令(例如for
)应用于列表推导内的每个信号帧,而不是fft
循环,然后scipy.array
将其转换为2D数组。我用它来制作光谱图,色谱图,MFCC-gram等等。istft
中使用了一个朴素的重叠和添加方法。为了重建原始信号,顺序窗口函数的总和必须是常数,优选地等于1(1.0)。在这种情况下,我选择了Hann(或hanning
)窗口,并且50%的重叠完美无缺。有关详细信息,请参阅this discussion。测试:
if __name__ == '__main__':
f0 = 440 # Compute the STFT of a 440 Hz sinusoid
fs = 8000 # sampled at 8 kHz
T = 5 # lasting 5 seconds
framesz = 0.050 # with a frame size of 50 milliseconds
hop = 0.025 # and hop size of 25 milliseconds.
# Create test signal and STFT.
t = scipy.linspace(0, T, T*fs, endpoint=False)
x = scipy.sin(2*scipy.pi*f0*t)
X = stft(x, fs, framesz, hop)
# Plot the magnitude spectrogram.
pylab.figure()
pylab.imshow(scipy.absolute(X.T), origin='lower', aspect='auto',
interpolation='nearest')
pylab.xlabel('Time')
pylab.ylabel('Frequency')
pylab.show()
# Compute the ISTFT.
xhat = istft(X, fs, T, hop)
# Plot the input and output signals over 0.1 seconds.
T1 = int(0.1*fs)
pylab.figure()
pylab.plot(t[:T1], x[:T1], t[:T1], xhat[:T1])
pylab.xlabel('Time (seconds)')
pylab.figure()
pylab.plot(t[-T1:], x[-T1:], t[-T1:], xhat[-T1:])
pylab.xlabel('Time (seconds)')
答案 1 :(得分:9)
这是我使用的STFT代码。 STFT + ISTFT在这里给出完美重建(即使是第一帧)。我稍微修改了Steve Tjoa给出的代码:这里重建信号的幅度与输入信号的幅度相同。
import scipy, numpy as np
def stft(x, fftsize=1024, overlap=4):
hop = fftsize / overlap
w = scipy.hanning(fftsize+1)[:-1] # better reconstruction with this trick +1)[:-1]
return np.array([np.fft.rfft(w*x[i:i+fftsize]) for i in range(0, len(x)-fftsize, hop)])
def istft(X, overlap=4):
fftsize=(X.shape[1]-1)*2
hop = fftsize / overlap
w = scipy.hanning(fftsize+1)[:-1]
x = scipy.zeros(X.shape[0]*hop)
wsum = scipy.zeros(X.shape[0]*hop)
for n,i in enumerate(range(0, len(x)-fftsize, hop)):
x[i:i+fftsize] += scipy.real(np.fft.irfft(X[n])) * w # overlap-add
wsum[i:i+fftsize] += w ** 2.
pos = wsum != 0
x[pos] /= wsum[pos]
return x
答案 2 :(得分:3)
librosa.core.stft
和istft
看起来与我正在寻找的非常相似,但当时并不存在:
但是,它们并没有完全颠倒;两端是锥形的。
librosa.core.stft(y, n_fft=2048, hop_length=None, win_length=None, window=None, center=True, dtype=<type 'numpy.complex64'>)
答案 3 :(得分:1)
找到另一个STFT,但没有相应的反函数:
http://code.google.com/p/pytfd/source/browse/trunk/pytfd/stft.py
def stft(x, w, L=None):
...
return X_stft
答案 4 :(得分:1)
上述任何一个答案都不适合OOTB。所以我修改了Steve Tjoa。
import scipy, pylab
import numpy as np
def stft(x, fs, framesz, hop):
"""
x - signal
fs - sample rate
framesz - frame size
hop - hop size (frame size = overlap + hop size)
"""
framesamp = int(framesz*fs)
hopsamp = int(hop*fs)
w = scipy.hamming(framesamp)
X = scipy.array([scipy.fft(w*x[i:i+framesamp])
for i in range(0, len(x)-framesamp, hopsamp)])
return X
def istft(X, fs, T, hop):
""" T - signal length """
length = T*fs
x = scipy.zeros(T*fs)
framesamp = X.shape[1]
hopsamp = int(hop*fs)
for n,i in enumerate(range(0, len(x)-framesamp, hopsamp)):
x[i:i+framesamp] += scipy.real(scipy.ifft(X[n]))
# calculate the inverse envelope to scale results at the ends.
env = scipy.zeros(T*fs)
w = scipy.hamming(framesamp)
for i in range(0, len(x)-framesamp, hopsamp):
env[i:i+framesamp] += w
env[-(length%hopsamp):] += w[-(length%hopsamp):]
env = np.maximum(env, .01)
return x/env # right side is still a little messed up...
答案 5 :(得分:0)
我也在GitHub上发现了这个,但它似乎在管道而不是普通数组上运行:
http://github.com/ronw/frontend/blob/master/basic.py#LID281
def STFT(nfft, nwin=None, nhop=None, winfun=np.hanning):
...
return dataprocessor.Pipeline(Framer(nwin, nhop), Window(winfun),
RFFT(nfft))
def ISTFT(nfft, nwin=None, nhop=None, winfun=np.hanning):
...
return dataprocessor.Pipeline(IRFFT(nfft), Window(winfun),
OverlapAdd(nwin, nhop))
答案 6 :(得分:0)
我认为scipy.signal有你想要的东西。它有合理的默认值,支持多种窗口类型等...
http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.signal.spectrogram.html
from scipy.signal import spectrogram
freq, time, Spec = spectrogram(signal)
答案 7 :(得分:0)
basj答案的固定版本。
import scipy, numpy as np
import matplotlib.pyplot as plt
def stft(x, fftsize=1024, overlap=4):
hop=fftsize//overlap
w = scipy.hanning(fftsize+1)[:-1] # better reconstruction with this trick +1)[:-1]
return np.vstack([np.fft.rfft(w*x[i:i+fftsize]) for i in range(0, len(x)-fftsize, hop)])
def istft(X, overlap=4):
fftsize=(X.shape[1]-1)*2
hop=fftsize//overlap
w=scipy.hanning(fftsize+1)[:-1]
rcs=int(np.ceil(float(X.shape[0])/float(overlap)))*fftsize
print(rcs)
x=np.zeros(rcs)
wsum=np.zeros(rcs)
for n,i in zip(X,range(0,len(X)*hop,hop)):
l=len(x[i:i+fftsize])
x[i:i+fftsize] += np.fft.irfft(n).real[:l] # overlap-add
wsum[i:i+fftsize] += w[:l]
pos = wsum != 0
x[pos] /= wsum[pos]
return x
a=np.random.random((65536))
b=istft(stft(a))
plt.plot(range(len(a)),a,range(len(b)),b)
plt.show()
答案 8 :(得分:-3)
如果您可以访问满足您需要的C二进制库,那么使用http://code.google.com/p/ctypesgen/生成该库的Python接口。