为了完成我的C ++ / Rcpp编程,我尝试了实现(样本)标准偏差函数:
#include <Rcpp.h>
#include <vector>
#include <cmath>
#include <numeric>
// [[Rcpp::export]]
double cppSD(Rcpp::NumericVector rinVec)
{
std::vector<double> inVec(rinVec.begin(),rinVec.end());
int n = inVec.size();
double sum = std::accumulate(inVec.begin(), inVec.end(), 0.0);
double mean = sum / inVec.size();
for(std::vector<double>::iterator iter = inVec.begin();
iter != inVec.end(); ++iter){
double temp;
temp= (*iter - mean)*(*iter - mean);
*iter = temp;
}
double sd = std::accumulate(inVec.begin(), inVec.end(), 0.0);
return std::sqrt( sd / (n-1) );
}
我还决定测试Armadillo库中的stddev
函数,考虑到它可以在向量上调用:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
using namespace Rcpp;
// [[Rcpp::export]]
double armaSD(arma::colvec inVec)
{
return arma::stddev(inVec);
}
然后我针对一些不同大小的向量,对基本R函数sd()
对这两个函数进行了基准测试:
Rcpp::sourceCpp('G:/CPP/armaSD.cpp')
Rcpp::sourceCpp('G:/CPP/cppSD.cpp')
require(microbenchmark)
##
## sample size = 1,000: armaSD() < cppSD() < sd()
X <- rexp(1000)
microbenchmark(armaSD(X),sd(X), cppSD(X))
#Unit: microseconds
# expr min lq median uq max neval
# armaSD(X) 4.181 4.562 4.942 5.322 12.924 100
# sd(X) 17.865 19.766 20.526 21.287 86.285 100
# cppSD(X) 4.561 4.941 5.321 5.701 29.269 100
##
## sample size = 10,000: armaSD() < cppSD() < sd()
X <- rexp(10000)
microbenchmark(armaSD(X),sd(X), cppSD(X))
#Unit: microseconds
# expr min lq median uq max neval
# armaSD(X) 24.707 25.847 26.4175 29.6490 52.455 100
# sd(X) 51.315 54.356 55.8760 61.1980 100.730 100
# cppSD(X) 26.608 28.128 28.8885 31.7395 114.413 100
##
## sample size = 25,000: armaSD() < cppSD() < sd()
X <- rexp(25000)
microbenchmark(armaSD(X),sd(X), cppSD(X))
#Unit: microseconds
# expr min lq median uq max neval
# armaSD(X) 66.900 67.6600 68.040 76.403 155.845 100
# sd(X) 108.332 111.5625 122.016 125.817 169.910 100
# cppSD(X) 70.320 71.0805 74.692 80.203 102.250 100
##
## sample size = 50,000: cppSD() < sd() < armaSD()
X <- rexp(50000)
microbenchmark(armaSD(X),sd(X), cppSD(X))
#Unit: microseconds
# expr min lq median uq max neval
# armaSD(X) 249.733 267.4085 297.8175 337.729 642.388 100
# sd(X) 203.740 229.3975 240.2300 260.186 303.709 100
# cppSD(X) 162.308 185.1140 239.6600 256.575 290.405 100
##
## sample size = 75,000: sd() < cppSD() < armaSD()
X <- rexp(75000)
microbenchmark(armaSD(X),sd(X), cppSD(X))
#Unit: microseconds
# expr min lq median uq max neval
# armaSD(X) 445.110 479.8900 502.5070 520.5625 642.388 100
# sd(X) 310.931 334.8780 354.0735 379.7310 429.146 100
# cppSD(X) 346.661 380.8715 400.6370 424.0140 501.747 100
对于较小的样本,我的C ++函数cppSD()
比stats::sd()
快,但是对于较大尺寸的向量较慢,因为stats::sd()
被矢量化,因此我感到非常惊讶。但是,我没想到arma::stddev()
函数会出现性能下降,因为它似乎也是以矢量化方式运行的。我使用arma::stdev()
的方式是否存在问题,或者只是stats::sd()
以这种方式编写(C
我假设)它可以更有效地处理更大的向量?任何意见都将不胜感激。
更新:
虽然我的问题最初是关于arma::stddev
的正确使用,而不是尝试找到最有效的方法来计算样本标准偏差,但是看到{{1}这是非常有趣的。糖功能表现得很好。为了让事情变得更有趣,我将下面的Rcpp::sd
和arma::stddev
函数与我从JJ Allaire的两个Rcpp图库帖子改编的Rcpp::sd
版本进行了基准测试 - {{ 3}}和here:
RcppParallel
这是在我的笔记本电脑上运行64位Linux,配备i5-4200U CPU @ 1.60GHz处理器;但我猜测library(microbenchmark)
set.seed(123)
x <- rnorm(5.5e06)
##
Res <- microbenchmark(
armaSD(x),
par_sd(x),
sd_sugar(x),
times=500L,
control=list(warmup=25))
##
R> print(Res)
Unit: milliseconds
expr min lq mean median uq max neval
armaSD(x) 24.486943 24.960966 26.994684 25.255584 25.874139 123.55804 500
par_sd(x) 8.130751 8.322682 9.136323 8.429887 8.624072 22.77712 500
sd_sugar(x) 13.713366 13.984638 14.628911 14.156142 14.401138 32.81684 500
和par_sd
之间的差异在Windows机器上会不那么重要。
sugar_sd
版本的代码(相当长,并且需要与RcppParallel
仿函数的重载operator()
中使用的lambda表达式的C ++ 11兼容编译器:
InnerProduct
答案 0 :(得分:15)
你在如何实例化Armadillo对象时犯了一个微妙的错误 - 这会导致副本,从而降低性能。
使用const arma::colvec & invec
的界面代替,一切都很好:
R> sourceCpp("/tmp/sd.cpp")
R> library(microbenchmark)
R> X <- rexp(500)
R> microbenchmark(armaSD(X), armaSD2(X), sd(X), cppSD(X))
Unit: microseconds
expr min lq median uq max neval
armaSD(X) 3.745 4.0280 4.2055 4.5510 19.375 100
armaSD2(X) 3.305 3.4925 3.6400 3.9525 5.154 100
sd(X) 22.463 23.6985 25.1525 26.0055 52.457 100
cppSD(X) 3.640 3.9495 4.2030 4.8620 13.609 100
R> X <- rexp(5000)
R> microbenchmark(armaSD(X), armaSD2(X), sd(X), cppSD(X))
Unit: microseconds
expr min lq median uq max neval
armaSD(X) 18.627 18.9120 19.3245 20.2150 34.684 100
armaSD2(X) 14.583 14.9020 15.1675 15.5775 22.527 100
sd(X) 54.507 58.8315 59.8615 60.4250 84.857 100
cppSD(X) 18.585 19.0290 19.3970 20.5160 22.174 100
R> X <- rexp(50000)
R> microbenchmark(armaSD(X), armaSD2(X), sd(X), cppSD(X))
Unit: microseconds
expr min lq median uq max neval
armaSD(X) 186.307 187.180 188.575 191.825 405.775 100
armaSD2(X) 142.447 142.793 143.207 144.233 155.770 100
sd(X) 382.857 384.704 385.223 386.075 405.713 100
cppSD(X) 181.601 181.895 182.279 183.350 194.588 100
R>
基于我的代码版本,其中所有内容都是一个文件,armaSD2
按照我的建议定义 - 从而获得了成功。
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
#include <vector>
#include <cmath>
#include <numeric>
// [[Rcpp::export]]
double cppSD(Rcpp::NumericVector rinVec) {
std::vector<double> inVec(rinVec.begin(),rinVec.end());
int n = inVec.size();
double sum = std::accumulate(inVec.begin(), inVec.end(), 0.0);
double mean = sum / inVec.size();
for(std::vector<double>::iterator iter = inVec.begin();
iter != inVec.end();
++iter){
double temp = (*iter - mean)*(*iter - mean);
*iter = temp;
}
double sd = std::accumulate(inVec.begin(), inVec.end(), 0.0);
return std::sqrt( sd / (n-1) );
}
// [[Rcpp::export]]
double armaSD(arma::colvec inVec) {
return arma::stddev(inVec);
}
// [[Rcpp::export]]
double armaSD2(const arma::colvec & inVec) { return arma::stddev(inVec); }
/*** R
library(microbenchmark)
X <- rexp(500)
microbenchmark(armaSD(X), armaSD2(X), sd(X), cppSD(X))
X <- rexp(5000)
microbenchmark(armaSD(X), armaSD2(X), sd(X), cppSD(X))
X <- rexp(50000)
microbenchmark(armaSD(X), armaSD2(X), sd(X), cppSD(X))
*/
答案 1 :(得分:2)
我认为用Rcpp糖建立的sd
函数效率更高。请参阅以下代码:
#include <RcppArmadillo.h>
//[[Rcpp::depends(RcppArmadillo)]]
#include <vector>
#include <cmath>
#include <numeric>
using namespace Rcpp;
//[[Rcpp::export]]
double sd_cpp(NumericVector& xin){
std::vector<double> xres(xin.begin(),xin.end());
int n=xres.size();
double sum=std::accumulate(xres.begin(),xres.end(),0.0);
double mean=sum/n;
for(std::vector<double>::iterator iter=xres.begin();iter!=xres.end();++iter){
double tmp=(*iter-mean)*(*iter-mean);
*iter=tmp;
}
double sd=std::accumulate(xres.begin(),xres.end(),0.0);
return std::sqrt(sd/(n-1));
}
//[[Rcpp::export]]
double sd_arma(arma::colvec& xin){
return arma::stddev(xin);
}
//[[Rcpp::export]]
double sd_sugar(NumericVector& xin){
return sd(xin);
}
> sourcecpp("sd.cpp")
> microbenchmark(sd(X),sd_cpp(X),sd_arma(X),sd_sugar(X))
Unit: microseconds
expr min lq mean median uq max neval
sd(X) 47.655 49.4120 51.88204 50.5395 51.1950 113.643 100
sd_cpp(X) 28.145 28.4410 29.01541 28.6695 29.4570 37.118 100
sd_arma(X) 23.706 23.9615 24.65931 24.1955 24.9520 50.375 100
sd_sugar(X) 19.197 19.478 20.38872 20.0785 21.2015 28.664 100
答案 2 :(得分:0)
关于Rcpp函数的2个问题:
1)您希望没有均值的标准偏差的可能性有多大?如果要求没有平均值的SD的情况很少见,为什么不返回两者,而不是让R用户进行2次函数调用,实际上两次计算平均值就可以了。
2)有什么理由在函数内部克隆载体?
using namespace Rcpp;
// [[Rcpp::plugins(cpp14)]]
// [[Rcpp::export]]
NumericVector cppSD(NumericVector rinVec)
{
double n = (double)rinVec.size();
double sum = 0;
for (double& v : rinVec)
sum += v;
double mean = sum / n;
double varianceNumerator = 0;
for(double& v : rinVec)
varianceNumerator += (v - mean) * (v - mean);
return NumericVector::create(_["std.dev"] = sqrt(varianceNumerator/ (n - 1.0)),
_["mean"] = mean);
}