matlab代码的矢量化可以更快地执行

时间:2014-05-31 14:48:53

标签: matlab pca face-recognition eigenvalue

我的代码以下列方式工作:

1.首先,它从训练集中获得了几张图像

2.加载这些图像后,我们找到标准化的面部,平均面部并进行多次计算。

3.接下来,我们要求我们想要识别的图像的名称

4.然后我们将输入图像投影到本征空间,并根据与特征脸的差异我们做出决定。

5.根据每个输入图像的特征权重向量,我们使用kmeans命令创建聚类。

我试过的源代码:

clear all
close all
clc
% number of images on your training set.
M=1200;

%Chosen std and mean. 
%It can be any number that it is close to the std and mean of most of the images.
um=60;
ustd=32;

%read and show images(bmp);
S=[];   %img matrix

for i=1:M
    str=strcat(int2str(i),'.jpg');   %concatenates two strings that form the name of the image
    eval('img=imread(str);');


       [irow icol d]=size(img); % get the number of rows (N1) and columns (N2)
       temp=reshape(permute(img,[2,1,3]),[irow*icol,d]);     %creates a (N1*N2)x1 matrix
    S=[S temp];         %X is a N1*N2xM matrix after finishing the sequence
                        %this is our S
end


%Here we change the mean and std of all images. We normalize all images.
%This is done to reduce the error due to lighting conditions.
for i=1:size(S,2)
    temp=double(S(:,i));
    m=mean(temp);
    st=std(temp);
    S(:,i)=(temp-m)*ustd/st+um;
end

%show normalized images

for i=1:M
    str=strcat(int2str(i),'.jpg');
    img=reshape(S(:,i),icol,irow);
    img=img';

end


%mean image;
m=mean(S,2);   %obtains the mean of each row instead of each column
tmimg=uint8(m);   %converts to unsigned 8-bit integer. Values range from 0 to 255
img=reshape(tmimg,icol,irow);    %takes the N1*N2x1 vector and creates a N2xN1 matrix
img=img';       %creates a N1xN2 matrix by transposing the image.

% Change image for manipulation
dbx=[];   % A matrix
for i=1:M
    temp=double(S(:,i));
    dbx=[dbx temp];
end

%Covariance matrix C=A'A, L=AA'
A=dbx';
L=A*A';
% vv are the eigenvector for L
% dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx';
[vv dd]=eig(L);
% Sort and eliminate those whose eigenvalue is zero
v=[];
d=[];
for i=1:size(vv,2)
    if(dd(i,i)>1e-4)
        v=[v vv(:,i)];
        d=[d dd(i,i)];
    end
 end

 %sort,  will return an ascending sequence
 [B index]=sort(d);
 ind=zeros(size(index));
 dtemp=zeros(size(index));
 vtemp=zeros(size(v));
 len=length(index);
 for i=1:len
    dtemp(i)=B(len+1-i);
    ind(i)=len+1-index(i);
    vtemp(:,ind(i))=v(:,i);
 end
 d=dtemp;
 v=vtemp;


%Normalization of eigenvectors
 for i=1:size(v,2)       %access each column
   kk=v(:,i);
   temp=sqrt(sum(kk.^2));
   v(:,i)=v(:,i)./temp;
end

%Eigenvectors of C matrix
u=[];
for i=1:size(v,2)
    temp=sqrt(d(i));
    u=[u (dbx*v(:,i))./temp];
end

%Normalization of eigenvectors
for i=1:size(u,2)
   kk=u(:,i);
   temp=sqrt(sum(kk.^2));
    u(:,i)=u(:,i)./temp;
end


% show eigenfaces;

for i=1:size(u,2)
    img=reshape(u(:,i),icol,irow);
    img=img';
    img=histeq(img,255);

end


% Find the weight of each face in the training set.
omega = [];
for h=1:size(dbx,2)
    WW=[];    
    for i=1:size(u,2)
        t = u(:,i)';    
        WeightOfImage = dot(t,dbx(:,h)');
        WW = [WW; WeightOfImage];
    end
    omega = [omega WW];
end


% Acquire new image
% Note: the input image must have a bmp or jpg extension. 
%       It should have the same size as the ones in your training set. 
%       It should be placed on your desktop
ed_min=[];

srcFiles = dir('G:\newdatabase\*.jpg');  % the folder in which ur images exists
for b = 1 : length(srcFiles)
    filename = strcat('G:\newdatabase\',srcFiles(b).name);
    Imgdata = imread(filename);

        InputImage=Imgdata;

InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]);
temp=InImage;
me=mean(temp);
st=std(temp);
temp=(temp-me)*ustd/st+um;
NormImage = temp;
Difference = temp-m;

p = [];
aa=size(u,2);
for i = 1:aa
    pare = dot(NormImage,u(:,i));
    p = [p; pare];
end


InImWeight = [];
for i=1:size(u,2)
    t = u(:,i)';
    WeightOfInputImage = dot(t,Difference');
    InImWeight = [InImWeight; WeightOfInputImage];
end
noe=numel(InImWeight);


% Find Euclidean distance
e=[];
for i=1:size(omega,2)
    q = omega(:,i);
    DiffWeight = InImWeight-q;
    mag = norm(DiffWeight);
    e = [e mag];

end

ed_min=[ed_min MinimumValue];

theta=6.0e+03;
%disp(e)

z(b,:)=InImWeight;

end


IDX = kmeans(z,5);
clustercount=accumarray(IDX, ones(size(IDX)));

disp(clustercount);
  

100张图像的运行时间:经过的时间是103.947573秒。

问题:

1.M = 50工作正常(即训练集包含50张图像)但M = 1200则没有(即训练集包含1200张图像)。它没有显示任何错误。没有输出。我等了10分钟仍然没有输出。问题是什么?我哪里错了?

1 个答案:

答案 0 :(得分:1)

要回答第二个问题,您只需将生成的变量“保存”为工作目录(当前文件夹)中的.mat文件,以后可以访问。因此,在您的代码中,如果'训练特征脸'由变量'u'给出,您可以使用以下内容:

save('eigenface.mat','u')

这将创建一个名为 eigenface.mat 的.mat文件,其中包含变量'u',即特征脸。请注意,此变量保存在当前文件夹中。

在稍后的实例中,当您尝试使用测试数据时,您可以简单地“加载”此变量:

load('eigenface.mat')

这会自动将'u'加载到您的工作区中。 如有必要,您还可以在同一.mat文件中保存其他变量

save('eigenface.mat','u','v'...)

第一个问题的答案是代码尚未完成运行。如上面的评论部分所示,对代码进行矢量化(而不是使用 for 循环)可以显着提高速度。

<强> [编辑]

由于图像不是很大,因此第一个for循环的代码不会显着减慢。您可以通过向量化代码来提高其余代码的性能。矢量化操作比for循环更快。此链接可能有助于理解矢量化:

http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

例如,第二个for循环可以用以下矢量化形式替换,如评论中所示

tempS = double(S); 
meanS = mean(S,1); 
stdS = std(S,0,1); 
S = (tempS - meanS) ./ stdS;

使用MATLAB的定时器函数tictoc来查找第一个for循环执行的时间。在for循环之前添加tic,在之后添加toc。如果50张图像所需的时间约为104秒,那么对于1200张图像,它将显着显着