你如何迭代地计算0到N的所有可能的排列?

时间:2010-03-06 01:03:03

标签: language-agnostic math permutation

我需要迭代地计算排列。方法签名如下:

int[][] permute(int n)

例如,对于n = 3,返回值为:

[[0,1,2],
 [0,2,1],
 [1,0,2],
 [1,2,0],
 [2,0,1],
 [2,1,0]]

您将如何以最有效的方式迭代地执行此操作?我可以递归地执行此操作,但我有兴趣看到许多替代方法来迭代地执行此操作。

10 个答案:

答案 0 :(得分:23)

请参阅QuickPerm算法,它是迭代的:http://www.quickperm.org/

修改

为了清晰起见,用Ruby重写:

def permute_map(n)
  results = []
  a, p = (0...n).to_a, [0] * n
  i, j = 0, 0
  i = 1
  results << yield(a)
  while i < n
    if p[i] < i
      j = i % 2 * p[i] # If i is odd, then j = p[i], else j = 0
      a[j], a[i] = a[i], a[j] # Swap
      results << yield(a)
      p[i] += 1
      i = 1
    else
      p[i] = 0
      i += 1
    end
  end
  return results
end

答案 1 :(得分:6)

从一个排列步进到下一个排列的算法与小学添加非常相似 - 当发生溢出时,“携带一个”。

这是我在C中写的一个实现:

#include <stdio.h>

//Convenience macro.  Its function should be obvious.
#define swap(a,b) do { \
        typeof(a) __tmp = (a); \
        (a) = (b); \
        (b) = __tmp; \
    } while(0)

void perm_start(unsigned int n[], unsigned int count) {
    unsigned int i;
    for (i=0; i<count; i++)
        n[i] = i;
}

//Returns 0 on wraparound
int perm_next(unsigned int n[], unsigned int count) {
    unsigned int tail, i, j;

    if (count <= 1)
        return 0;

    /* Find all terms at the end that are in reverse order.
       Example: 0 3 (5 4 2 1) (i becomes 2) */
    for (i=count-1; i>0 && n[i-1] >= n[i]; i--);
    tail = i;

    if (tail > 0) {
        /* Find the last item from the tail set greater than
            the last item from the head set, and swap them.
            Example: 0 3* (5 4* 2 1)
            Becomes: 0 4* (5 3* 2 1) */
        for (j=count-1; j>tail && n[j] <= n[tail-1]; j--);

        swap(n[tail-1], n[j]);
    }

    /* Reverse the tail set's order */
    for (i=tail, j=count-1; i<j; i++, j--)
        swap(n[i], n[j]);

    /* If the entire list was in reverse order, tail will be zero. */
    return (tail != 0);
}

int main(void)
{
    #define N 3
    unsigned int perm[N];

    perm_start(perm, N);
    do {
        int i;
        for (i = 0; i < N; i++)
            printf("%d ", perm[i]);
        printf("\n");
    } while (perm_next(perm, N));

    return 0;
}

答案 2 :(得分:5)

使用1.9的Array#permutation是一个选项吗?

>> a = [0,1,2].permutation(3).to_a
=> [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]

答案 3 :(得分:4)

下面是我在C#中的下一个排列算法的泛型版本,与STL的next_permutation函数非常相似(但如果它已经是最大可能的排列,它就不会反转集合,就像C ++版本那样)

理论上它应该适用于任何IList&lt;&gt; ICMParables。

    static bool NextPermutation<T>(IList<T> a) where T: IComparable
    {
        if (a.Count < 2) return false;
        var k = a.Count-2;

        while (k >= 0 && a[k].CompareTo( a[k+1]) >=0) k--;
        if(k<0)return false;

        var l = a.Count - 1;
        while (l > k && a[l].CompareTo(a[k]) <= 0) l--;

        var tmp = a[k];
        a[k] = a[l];
        a[l] = tmp;

        var i = k + 1;
        var j = a.Count - 1;
        while(i<j)
        {
            tmp = a[i];
            a[i] = a[j];
            a[j] = tmp;
            i++;
            j--;
        }

        return true;
    }

演示/测试代码:

        var src = "1234".ToCharArray();
        do
        {
            Console.WriteLine(src);
        } 
        while (NextPermutation(src));

答案 4 :(得分:2)

这是C#中的一个实现,作为扩展方法:

public static IEnumerable<List<T>> Permute<T>(this IList<T> items)
{
    var indexes = Enumerable.Range(0, items.Count).ToArray();

    yield return indexes.Select(idx => items[idx]).ToList();

    var weights = new int[items.Count];
    var idxUpper = 1;
    while (idxUpper < items.Count)
    {
        if (weights[idxUpper] < idxUpper)
        {
            var idxLower = idxUpper % 2 * weights[idxUpper];
            var tmp = indexes[idxLower];
            indexes[idxLower] = indexes[idxUpper];
            indexes[idxUpper] = tmp;
            yield return indexes.Select(idx => items[idx]).ToList();
            weights[idxUpper]++;
            idxUpper = 1;
        }
        else
        {
            weights[idxUpper] = 0;
            idxUpper++;
        }
    }
}

单元测试:

[TestMethod]
public void Permute()
{
    var ints = new[] { 1, 2, 3 };
    var orderings = ints.Permute().ToList();
    Assert.AreEqual(6, orderings.Count);
    AssertUtil.SequencesAreEqual(new[] { 1, 2, 3 }, orderings[0]);
    AssertUtil.SequencesAreEqual(new[] { 2, 1, 3 }, orderings[1]);
    AssertUtil.SequencesAreEqual(new[] { 3, 1, 2 }, orderings[2]);
    AssertUtil.SequencesAreEqual(new[] { 1, 3, 2 }, orderings[3]);
    AssertUtil.SequencesAreEqual(new[] { 2, 3, 1 }, orderings[4]);
    AssertUtil.SequencesAreEqual(new[] { 3, 2, 1 }, orderings[5]);
}

方法AssertUtil.SequencesAreEqual是一个自定义测试帮助程序,可以很容易地重新创建。

答案 5 :(得分:2)

我发现Joey Adams的版本最具可读性,但由于C#处理for循环变量的范围,我无法将其直接移植到C#。因此,这是他的代码的略微调整版本:

/// <summary>
/// Performs an in-place permutation of <paramref name="values"/>, and returns if there 
/// are any more permutations remaining.
/// </summary>
private static bool NextPermutation(int[] values)
{
    if (values.Length == 0)
        throw new ArgumentException("Cannot permutate an empty collection.");

    //Find all terms at the end that are in reverse order.
    //  Example: 0 3 (5 4 2 1) (i becomes 2)
    int tail = values.Length - 1;
    while(tail > 0 && values[tail - 1] >= values[tail])
        tail--;

    if (tail > 0)
    {
        //Find the last item from the tail set greater than the last item from the head 
        //set, and swap them.
        //  Example: 0 3* (5 4* 2 1)
        //  Becomes: 0 4* (5 3* 2 1)
        int index = values.Length - 1;
        while (index > tail && values[index] <= values[tail - 1])
            index--;

        Swap(ref values[tail - 1], ref values[index]);
    }

    //Reverse the tail set's order.
    int limit = (values.Length - tail) / 2;
    for (int index = 0; index < limit; index++)
        Swap(ref values[tail + index], ref values[values.Length - 1 - index]);

    //If the entire list was in reverse order, tail will be zero.
    return (tail != 0);
}

private static void Swap<T>(ref T left, ref T right)
{
    T temp = left;
    left = right;
    right = temp;
}

答案 6 :(得分:2)

我还遇到了另一个答案中引用的QuickPerm算法。我想另外分享这个答案,因为我看到了一些可以立即做出更改的更改。例如,如果索引数组&#34; p&#34;初始化略有不同,它节省了必须在循环之前返回第一个排列。此外,所有那些while循环和if ifs占用了更多的空间。

void permute(char* s, size_t l) {
    int* p = new int[l];
    for (int i = 0; i < l; i++) p[i] = i;
    for (size_t i = 0; i < l; printf("%s\n", s)) {
        std::swap(s[i], s[i % 2 * --p[i]]);
        for (i = 1; p[i] == 0; i++) p[i] = i;
    }
}

答案 7 :(得分:1)

你可以迭代调用的递归算法怎么样?如果你真的需要那些东西作为这样的列表(你应该明确地指出,而不是分配一堆无意义的内存)。您可以通过其索引简单地计算动态排列。

非常类似于置换是一个加法重新逆转尾部(而不是恢复为0),索引特定的置换值是找到基数为n的数字,然后是n-1,然后是n-2 ......通过每次迭代。

public static <T> boolean permutation(List<T> values, int index) {
    return permutation(values, values.size() - 1, index);
}
private static <T> boolean permutation(List<T> values, int n, int index) {
    if ((index == 0) || (n == 0))  return (index == 0);
    Collections.swap(values, n, n-(index % n));
    return permutation(values,n-1,index/n);
}

布尔值返回索引值是否超出范围。也就是说它用完了n个值,但仍留有剩余的索引。

它无法获得超过12个对象的所有排列。 12! &LT; Integer.MAX_VALUE&lt; 13!

- 但是,它非常漂亮。如果你做了很多错事可能会有用。

答案 8 :(得分:1)

我已经在Javascript中实现了算法。

var all = ["a", "b", "c"];
console.log(permute(all));

function permute(a){
  var i=1,j, temp = "";
  var p = [];
  var n = a.length;
  var output = [];

  output.push(a.slice());
  for(var b=0; b <= n; b++){
    p[b] = b;
  }

  while (i < n){
    p[i]--;
    if(i%2 == 1){
      j = p[i];
    }
    else{
      j = 0;
    }
    temp = a[j];
    a[j] = a[i];
    a[i] = temp;

    i=1;
    while (p[i] === 0){
      p[i] = i;
      i++;
    }
    output.push(a.slice());
  }
  return output;
}

答案 9 :(得分:0)

我使用了here中的算法。该页面包含许多有用的信息。

编辑:抱歉,这些都是递归的。 uray在他的回答中发布了迭代算法的链接。

我已经创建了一个PHP示例。除非你真的需要返回所有结果,否则我只会创建一个迭代类,如下所示:

<?php
class Permutator implements Iterator
{
  private $a, $n, $p, $i, $j, $k;
  private $stop;

  public function __construct(array $a)
  {
    $this->a = array_values($a);
    $this->n = count($this->a);
  }

  public function current()
  {
    return $this->a;
  }

  public function next()
  {
    ++$this->k;
    while ($this->i < $this->n)
    {
      if ($this->p[$this->i] < $this->i)
      {
        $this->j = ($this->i % 2) * $this->p[$this->i];

        $tmp = $this->a[$this->j];
        $this->a[$this->j] = $this->a[$this->i];
        $this->a[$this->i] = $tmp;

        $this->p[$this->i]++;
        $this->i = 1;
        return;
      }

      $this->p[$this->i++] = 0;
    }

    $this->stop = true;
  }

  public function key()
  {
    return $this->k;
  }

  public function valid()
  {
    return !$this->stop;
  }

  public function rewind()
  {
    if ($this->n) $this->p = array_fill(0, $this->n, 0);
    $this->stop = $this->n == 0;
    $this->i = 1;
    $this->j = 0;
    $this->k = 0;
  }

}

foreach (new Permutator(array(1,2,3,4,5)) as $permutation)
{
  var_dump($permutation);
}
?>

请注意,它将每个PHP数组视为索引数组。