什么更快 - 使用元素选择运算符访问多阵列的元素,或使用迭代器遍历多阵列?
在我的情况下,我需要每次对多重阵列的所有元素进行完整的传递。
答案 0 :(得分:5)
访问boost::multi_array
的每个元素的最快方法是通过data()
和num_elements()
。
使用data()
,您可以访问底层原始存储(包含数组数据的连续块),因此不需要进行多个索引计算(同时考虑multi_array
可以从不同于0的基数索引数组,这是一个进一步的复杂化。
一个简单的测试给出:
g++ -O3 -fomit-frame-pointer -march=native (GCC v4.8.2)
Writing (index): 9.70651
Writing (data): 2.22353
Reading (index): 4.5973 (found 1)
Reading (data): 3.53811 (found 1)
clang++ -O3 -fomit-frame-pointer -march=native (CLANG v3.3)
Writing (index): 5.49858
Writing (data): 2.13678
Reading (index): 5.07324 (found 1)
Reading (data): 2.55109 (found 1)
默认情况下,boost访问方法执行范围检查。如果提供的索引超出为数组定义的范围,则断言将中止程序。要禁用范围检查,可以在将BOOST_DISABLE_ASSERTS
包含在应用程序中之前定义multi_array.hpp
预处理器宏。
这会降低很多性能差异:
g++ -O3 -fomit-frame-pointer -march=native (GCC v4.8.2)
Writing (index): 3.15244
Writing (data): 2.23002
Reading (index): 1.89553 (found 1)
Reading (data): 1.54427 (found 1)
clang++ -O3 -fomit-frame-pointer -march=native (CLANG v3.3)
Writing (index): 2.24831
Writing (data): 2.12853
Reading (index): 2.59164 (found 1)
Reading (data): 2.52141 (found 1)
性能差异增加(即data()
更快):
无论如何,这种优化不太可能在实际程序中产生可测量的差异。你不应该担心这一点,除非你通过广泛的测试确定它是导致某种瓶颈的源头。
来源:
#include <chrono>
#include <iostream>
// #define BOOST_DISABLE_ASSERTS
#include <boost/multi_array.hpp>
int main()
{
using array3 = boost::multi_array<unsigned, 3>;
using index = array3::index;
using clock = std::chrono::high_resolution_clock;
using duration = std::chrono::duration<double>;
constexpr unsigned d1(300), d2(400), d3(200), sup(100);
array3 A(boost::extents[d1][d2][d3]);
// Writing via index
const auto t_begin1(clock::now());
unsigned values1(0);
for (unsigned n(0); n < sup; ++n)
for (index i(0); i != d1; ++i)
for (index j(0); j != d2; ++j)
for (index k(0); k != d3; ++k)
A[i][j][k] = ++values1;
const auto t_end1(clock::now());
// Writing directly
const auto t_begin2(clock::now());
unsigned values2(0);
for (unsigned n(0); n < sup; ++n)
{
const auto sup(A.data() + A.num_elements());
for (auto i(A.data()); i != sup; ++i)
*i = ++values2;
}
const auto t_end2(clock::now());
// Reading via index
const auto t_begin3(clock::now());
bool found1(false);
for (unsigned n(0); n < sup; ++n)
for (index i(0); i != d1; ++i)
for (index j(0); j != d2; ++j)
for (index k(0); k != d3; ++k)
if (A[i][j][k] == values1)
found1 = true;
const auto t_end3(clock::now());
// Reading directly
const auto t_begin4(clock::now());
bool found2(false);
for (unsigned n(0); n < sup; ++n)
{
const auto sup(A.data() + A.num_elements());
for (auto i(A.data()); i != sup; ++i)
if (*i == values2)
found2 = true;
}
const auto t_end4(clock::now());
std::cout << "Writing (index): "
<< std::chrono::duration_cast<duration>(t_end1 - t_begin1).count()
<< std::endl
<< "Writing (data): "
<< std::chrono::duration_cast<duration>(t_end2 - t_begin2).count()
<< std::endl
<< "Reading (index): "
<< std::chrono::duration_cast<duration>(t_end3 - t_begin3).count()
<< " (found " << found1 << ")" << std::endl
<< "Reading (data): "
<< std::chrono::duration_cast<duration>(t_end4 - t_begin4).count()
<< " (found " << found2 << ")" << std::endl;
return 0;
}