我试图找到一个使用interleave
和lz-lst-accumulate
延迟惰性列表惰性列表的实现,这些是我编写的过程。这是到目前为止的代码:
(define lz-lst-accumulate
(lambda (op initial lz)
(if (empty? lz)
initial
(op (head lz)
(lambda() (lz-lst-accumulate op initial (tail lz)))))))
(define interleave
(lambda (lz1 lz2)
(if (empty? lz1)
(lz2)
(cons (head lz1)
(interleave (lz2) (lambda() (tail lz1)))))))
(define all-div-from-flattened
(lambda (lower)
(lz-lst-accumulate interleave '() (all-div-from lower))))
(define take
(lambda (lz-lst n)
(if (= n 0)
(list)
(cons (car lz-lst)
(take (tail lz-lst) (sub1 n))))))
(define head
(lambda (lz)
(car lz)))
(define tail
(lambda (lz-lst)
((cdr lz-lst))))
(define lz-lst-map
(lambda (f lz)
(if (empty? lz)
lz
(cons (f (head lz))
(lambda () (lz-lst-map f (tail lz)))))))
; Signature: all-div-from (low)
; Type: [Number -> Lazy-list]
; Purpose: return a lazy-list of lazy-lists. The nested lazy-lists
; correspond to the integers greater than lower in an
; increasing order. Each nested lazy-list is the list of
; all integers divisible by i for some i>=lower.
; Pre-conditions: low is an integer
; Tests: > (define lz3 (all-div-from 7))
; > (take lz3 3)
; '((7 . #<procedure>) (8 . #<procedure>) (9 . #<procedure>))
; > (take (head lz3) 3)
; '(7 14 21)
; > (take (head (tail lz3)) 3)
; '(8 16 24)
(define all-div-from
(lambda(lower)
(cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
(lambda() (all-div-from (add1 lower))))))
; Signature: div-from (low int)
; Type: [[Number*Number]-> Lazy-list]
; Purpose: return the lazy-list of all integers that
; are larger than low and divisible by int
; Pre-conditions: int > low
; Tests: > (define lz1 (div-from 5 12))
; > (take lz1 3)
; '(12 24 36)
; > (define lz2 (div-from 7 10))
; > (take lz2 4)
; '(10 20 30 40)
(define div-from
(lambda (lower int)
(lz-lst-filter (lambda(x) (> x (- lower 1)))
(lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))
(define integers-from
(lambda (n) (cons n
(lambda () (integers-from (+ 1 n))))))
(define lz-lst-filter
(lambda (p lz)
(cond ((empty? lz) lz)
((p (head lz))
(cons (head lz)
(lambda () (lz-lst-filter p (tail lz)))))
(else (lz-lst-filter p (tail lz))))))
过程all-div-from
接收下限low
并返回懒惰列表的惰性列表。其中的每个惰性列表都由div-from
生成,它接收下限low
和整数int > low
,以及
返回大于low
且可被int
整除的所有整数的延迟列表。
输入和正确输出的示例:
> (take (all-div-from-flattened 7) 10)
'(7 8 14 9 21 16 28 10 35 24)
但是当我在翻译中尝试这一行时:
> (take (all-div-from-flattened 3) 3)
它进入无限循环。
我的实施必须使用lz-lst-accumulate
,interleave
和all-div-from-flattend
程序。
有关如何使其发挥作用的任何建议吗?
答案 0 :(得分:5)
您的interleave
不会产生懒惰列表;它产生一个普通的列表:它使用带有两个参数的cons
,第二个参数 not 包含在lambda
中。因此cons
迫使第二个参数通过,导致失控评估:
(define interleave
(lambda (lz1 dlz2) ; "delayed" lz2
(if (empty? lz1)
(dlz2)
(cons (head lz1)
; here:
(interleave (dlz2) (lambda () (tail lz1)))))))
(define lz-lst-accumulate
(lambda (op initial lz)
(if (empty? lz)
initial
(op (head lz)
(lambda () (lz-lst-accumulate op initial (tail lz)))))))
(all-div-from lower)
生成正确的输出( (lower . <proc1>) . <proc2> )
,但对(lz-lst-accumulate interleave '() (all-div-from lower))
的调用减少为
(interleave [lower . <proc1>]
(lambda () (lz-lst-accumulate interleave '() (<proc2>))))
并且减少为
(cons lower
(interleave (lz-lst-accumulate interleave '() (<proc2>))
(lambda () (<proc1>))))
虽然它必须减少为
(cons lower
(lambda () (interleave ....)))
生成 lazy 列表。
显而易见的(现在)解决方案是添加缺少的lambda
:
(define interleave
(lambda (lz1 lz2)
(if (empty? lz1)
(lz2)
(cons (head lz1)
(lambda () (interleave (lz2) (lambda() (tail lz1))))))))
现在它正确运行:
(take(all-div-from-flattened 7)10)
;价值12:(7 8 14 9 21 16 28 10 35 24)
您可以通过引入
来简化您的代码(define integers-from-by
(lambda (n d) (cons n
(lambda () (integers-from (+ n d) d)))))
然后,
;(define div-from
; (lambda (lower int)
; (lz-lst-filter (lambda(x) (> x (- lower 1)))
; (lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))
(define mults-from-of ; n in [int, 2*int ..], n >= lower
(lambda (lower int)
(let ((x (* (quotient (+ lower (- int 1)) int) int)))
(integers-from-by x int))))
你也可以
(define mults-above-of ; n in [int, 2*int ..], n > lower
(lambda (lower int)
(let ((x (* (+ (quotient lower int) 1) int)))
(integers-from-by x int))))
接下来,
; (define all-div-from
; (lambda(lower)
; (cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
; (lambda() (all-div-from (add1 lower))))))
(define all-mults-from
(lambda (lower)
(lz-lst-map (lambda (n) (mults-from-of n n))
; or just (integers-from-by n n)
(integers-from-by lower 1))))
如果您更改interleave
按顺序组合流,并切换到mults-above-of
定义中的all-mults-from
,那么(lz-lst-accumulate interleave-ordered '() (all-mults-from-above 2))
将定义所有复合的惰性列表数字,按顺序,通过在Eratosthenes的筛子中计数。
从这一点开始,让自己成为自己的lazy unbounded incremental sieve of Eratosthenes (在该页面上搜索&#34; SiCp&#34;)只需再迈出一步。
另一个评论:take
应该调整为不强制流的额外元素。更多here。