我正在研究一个拥有大约250000个观察点和50个预测变量的数据库(有些因素最终大约有100个特征)我使用blackboost()函数(来自mboost包)会给我一个内存分配错误。
同时,gbm()处理数据量没有问题。 根据文档,blackboost使用的算法与gbm相同。 ( “http://cran.r-project.org/web/packages/mboost/mboost.pdf”)。
我不知道为什么一个函数能够管理数据库而不是另一个函数,我的猜测是:
我想使用mboost中可用的AUC()丢失功能,但不能使用gbm,所以我会对任何克服blackboost内存使用限制的建议感兴趣。
另一个问题是,当我尝试减少模型中的变量数量时,我从blackboost中得到了这个新错误:
Error in matrix(f[ind1], nrow = n0, ncol = n1, byrow = TRUE) : the length of the data [107324] is not a multiple of the number of lines [152107]
它似乎来自AUC渐变功能。
感谢您的帮助。
答案 0 :(得分:0)
你是正确的ctree
是其中一个原因。我在下面显示了一个脚本,说明了这一点。如我所示,您可以通过设置control = party::ctree_control(..., remove_weights = TRUE)
稍微降低内存要求。但是,据我所知,您无法避免额外存储的data.frame
以及其他一些内存使用原因。
以下是示例:
# Load data and set options
options(digits = 4)
data("BostonHousing", package = "mlbench")
# Size of the training size
object.size(BostonHousing) / 10^6 # in MB
#> 0.1 bytes
# blackboost and mboost stores a ctree like structure not on the object itself
# but in an environment in the background. These can be big!
# First, we use some of the default settings
ctrl_lrg_mem <- party::ctree_control(
teststat = "max",
testtype = "Teststatistic",
mincriterion = 0,
maxdepth = 3,
stump = FALSE,
minbucket = 20,
savesplitstats = FALSE, # Default w/ mboost
remove_weights = FALSE) # Default w/ mboost
gc() # shows memory usage before
#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 2467924 131.9 3886542 207.6 3886542 207.6
#> Vcells 4553719 34.8 14341338 109.5 22408297 171.0
fit1 <- mboost::blackboost(
medv ~ ., data = BostonHousing,
tree_controls = ctrl_lrg_mem,
control = mboost::boost_control(
mstop = 100))
gc() # shows memory usage after
#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 2494735 133.3 3886542 207.6 3886542 207.6
#> Vcells 5608368 42.8 14341338 109.5 22408297 171.0
# It is not the object it self that requires a lot of memory
object.size(fit1) / 10^6
#> 1.3 bytes
# It is the objects stored in the environments in the back
tmp_env <- environment(fit1$predict)
length(tmp_env$ens) # The boosted trees
#> [1] 100
sum(unlist(lapply(tmp_env$ens, object.size))) / 10^6
#> [1] 7.312
# Moreover, there is also a model frame for the data stored in the baselearner
# function's environment which takes some space
env <- environment(fit1$basemodel[[1]]$fit)
str(env$df) # data frame of initial data
#> 'data.frame': 506 obs. of 14 variables:
#> $ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
#> $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
#> $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
#> $ chas : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
#> $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
#> $ rm : num 6.58 6.42 7.18 7 7.15 ...
#> $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
#> $ dis : num 4.09 4.97 4.97 6.06 6.06 ...
#> $ rad : num 1 2 2 3 3 3 5 5 5 5 ...
#> $ tax : num 296 242 242 222 222 222 311 311 311 311 ...
#> $ ptratio : num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
#> $ b : num 397 397 393 395 397 ...
#> $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
#> $ WLKJDJDQYBTDQCZDNHZMPZNCS: num 0 0 0 0 0 0 0 0 0 0 ...
object.size(env$df) / 10^6
#> 0.1 bytes
# str(env$object) # output excluded for space reasons
object.size(env$object) / 10^6
#> 0.8 bytes
# The above implies that if you data is 1GB then the fit will require 1 GB as
# well as far as I gather
# We can though reduce the memory requirements
ctrl_sml_mem <- party::ctree_control(
teststat = "max",
testtype = "Teststatistic",
mincriterion = 0,
maxdepth = 3,
stump = FALSE,
minbucket = 20,
savesplitstats = FALSE,
remove_weights = TRUE) # Changed
gc()
#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 2494810 133.3 3886542 207.6 3886542 207.6
#> Vcells 5608406 42.8 14341338 109.5 22408297 171.0
fit2 <- mboost::blackboost(
medv ~ ., data = BostonHousing,
tree_controls = ctrl_sml_mem,
control = mboost::boost_control(
mstop = 100))
gc()
#> used (Mb) gc trigger (Mb) max used (Mb)
#> Ncells 2520425 134.7 3886542 207.6 3886542 207.6
#> Vcells 6081411 46.4 14341338 109.5 22408297 171.0
# Reduces the size of the objects in the back
tmp_env <- environment(fit2$predict)
length(tmp_env$ens) # The boosted trees
#> [1] 100
sum(unlist(lapply(tmp_env$ens, object.size))) / 10^6
#> [1] 2.611
#####
# The version I run
sessionInfo(package = c("party", "mboost"))
#> R version 3.4.0 (2017-04-21)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows >= 8 x64 (build 9200)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252
#> [3] LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C
#> [5] LC_TIME=English_United Kingdom.1252
#>
#> attached base packages:
#> character(0)
#>
#> other attached packages:
#> [1] party_1.2-3 mboost_2.8-0
#>
#> loaded via a namespace (and not attached):
#> [1] Rcpp_0.12.11 compiler_3.4.0 formatR_1.4 git2r_0.18.0 R.methodsS3_1.7.1
#> [6] methods_3.4.0 R.utils_2.5.0 utils_3.4.0 tools_3.4.0 grDevices_3.4.0
#> [11] boot_1.3-19 digest_0.6.12 jsonlite_1.4 memoise_1.1.0 R.cache_0.12.0
#> [16] lattice_0.20-35 Matrix_1.2-9 shiny_1.0.2 parallel_3.4.0 curl_2.5
#> [21] mvtnorm_1.0-6 speedglm_0.3-2 coin_1.1-3 R.rsp_0.41.0 withr_1.0.2
#> [26] httr_1.2.1 stringr_1.2.0 knitr_1.15.1 stabs_0.6-2 graphics_3.4.0
#> [31] datasets_3.4.0 stats_3.4.0 devtools_1.12.0 stats4_3.4.0 dynamichazard_0.3.0
#> [36] grid_3.4.0 base_3.4.0 data.table_1.10.4 R6_2.2.0 survival_2.41-2
#> [41] multcomp_1.4-6 TH.data_1.0-8 magrittr_1.5 nnls_1.4 codetools_0.2-15
#> [46] modeltools_0.2-21 htmltools_0.3.6 splines_3.4.0 MASS_7.3-47 rsconnect_0.7
#> [51] strucchange_1.5-1 mime_0.5 xtable_1.8-2 httpuv_1.3.3 quadprog_1.5-5
#> [56] sandwich_2.3-4 stringi_1.1.5 zoo_1.8-0 R.oo_1.21.0