在没有列名的pandas中合并两个数据帧(对pandas来说是新的)

时间:2014-04-17 19:06:27

标签: python pandas

简短说明

如果数据中有重复的列名,请务必在读取文件时重命名一列。

如果您的数据中包含NaN等,请将其删除。

然后使用下面的正确答案进行合并。


可能是一个非常简单的问题。

我使用pandas.read_csv()读了两个数据集。

我的数据分为两个单独的csv。

使用以下代码:

        import mibian
        import pandas as pd


        underlying = pd.read_csv("txt1.csv", names=['dt1','price']);

        options = pd.read_csv("txt2.txt", names=['dt2','ticker','maturity','strike','cP','px','strike','yield','rF','T','rlzd10']);

        merged = underlying.merge(options, left_on='dt1', right_on='dt2');

我的两个数据头看起来像这样:

>>> underlying.head();

          0         1
0  20040326  3.579987
1  20040329  3.690494
2  20040330  3.755247
3  20040331  3.719373
4  20040401  3.728671

>>> options.head();

         0     1         2     3     4      5     6   7      8         9                10

0  20130628  SVXY  20130817  32.5  call  39.22  32.5   0  0.005  0.136986   0.411224

所以我在任一数据集上的列0都是我要合并的键,我想保留两个结果集中的所有数据。

我该怎么做呢?我在网上找到的所有例子都需要密钥,但我的结果中没有。

但是在加入时我得到以下错误:

                            Traceback (most recent call last):
                              File "<stdin>", line 1, in <module>
                              File "/Applications/Spyder.app/Contents/Resources/lib/python2.7/spyderlib/widgets/externalshell/sitecustomize.py", line 540, in runfile
                                execfile(filename, namespace)
                              File "/Users/jasonmellone/.spyder2/.temp.py", line 12, in <module>
                                merged = underlying.merge(options, left_on='dt1', right_on='dt2',how='outer');
                              File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/core/frame.py", line 3723, in merge
                                suffixes=suffixes, copy=copy)
                              File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/tools/merge.py", line 40, in merge
                                return op.get_result()
                              File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/tools/merge.py", line 197, in get_result
                                result_data = join_op.get_result()
                              File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/tools/merge.py", line 722, in get_result
                                return BlockManager(result_blocks, self.result_axes)
                              File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/core/internals.py", line 1954, in __init__
                                self._set_ref_locs(do_refs=True)
                              File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/core/internals.py", line 2091, in _set_ref_locs
                                'have _ref_locs set' % (block, labels))
                            AssertionError: Cannot create BlockManager._ref_locs because block [IntBlock: [dt1], 1 x 372145, dtype: int64] with duplicate items [Index([u'dt1', u'price', u'dt2', u'ticker', u'maturity', u'strike', u'cP', u'px', u'strike', u'yield', u'rF', u'T', u'rlzd10'], dtype='object')] does not have _ref_locs set

我搜索了我的数据集,没有重复项。

谢谢!

3 个答案:

答案 0 :(得分:2)

您仍然可以合并列:

merged = underlying.merge(options, left_on='0', right_on='0')

这将执行内部合并,因此只有两个数据集的交集,即两列中都存在0列中的值,如果您想要所有值,则指定outer

merged = underlying.merge(options, left_on='0', right_on='0', how='outer')

In [10]:  

merged = underlying.merge(options, left_on='0', right_on='0', how='outer')

merged

Out[10]:

          0       1_x   1_y         2     3     4      5     6   7      8  \
0  20040326  3.579987   NaN       NaN   NaN   NaN    NaN   NaN NaN    NaN   
1  20040329  3.690494   NaN       NaN   NaN   NaN    NaN   NaN NaN    NaN   
2  20040330  3.755247   NaN       NaN   NaN   NaN    NaN   NaN NaN    NaN   
3  20040331  3.719373   NaN       NaN   NaN   NaN    NaN   NaN NaN    NaN   
4  20040401  3.728671   NaN       NaN   NaN   NaN    NaN   NaN NaN    NaN   
5  20130628       NaN  SVXY  20130817  32.5  call  39.22  32.5   0  0.005   

          9        10  
0       NaN       NaN  
1       NaN       NaN  
2       NaN       NaN  
3       NaN       NaN  
4       NaN       NaN  
5  0.136986  0.411224  

[6 rows x 12 columns]

您必须重命名或移动上面发生冲突的列1_x1_y

最好将列重命名为事先合情合理的东西。 阅读csv时,您可以传递列名列表:

df = pd.read_csv('data.csv', names=['Id', 'Price'])

答案 1 :(得分:0)

类似的问题把我带到了这个线程。我最终遇到了一个关键错误。修复是删除了从 left_on='0' 到 left_on=0 的单引号。

merged =underlying.merge(options, left_on='0', right_on='0') 合并 = 底层合并(选项,left_on=0,right_on=0)

答案 2 :(得分:-1)

如果您要使用同一列进行合并(在您的情况下确实如此),则可以简单地使用on=0,其中0代表两个数据框中的第一列。

import pandas as pd
merged = underlying.merge(options, on=0, how='outer')
# or
merged = pd.merge(underlying, options, on=0, how='outer')

如果两个数据框中的索引列均不同,则可以使用left_onright_on本体。

# here 0 is the index column for df1 and 2 is the index column for df2
pd.merge(df1, df2, left_on=0, right_on=2, how='outer')