简短说明:
如果数据中有重复的列名,请务必在读取文件时重命名一列。
如果您的数据中包含NaN
等,请将其删除。
然后使用下面的正确答案进行合并。
可能是一个非常简单的问题。
我使用pandas.read_csv()
读了两个数据集。
我的数据分为两个单独的csv。
使用以下代码:
import mibian
import pandas as pd
underlying = pd.read_csv("txt1.csv", names=['dt1','price']);
options = pd.read_csv("txt2.txt", names=['dt2','ticker','maturity','strike','cP','px','strike','yield','rF','T','rlzd10']);
merged = underlying.merge(options, left_on='dt1', right_on='dt2');
我的两个数据头看起来像这样:
>>> underlying.head();
0 1
0 20040326 3.579987
1 20040329 3.690494
2 20040330 3.755247
3 20040331 3.719373
4 20040401 3.728671
和
>>> options.head();
0 1 2 3 4 5 6 7 8 9 10
0 20130628 SVXY 20130817 32.5 call 39.22 32.5 0 0.005 0.136986 0.411224
所以我在任一数据集上的列0都是我要合并的键,我想保留两个结果集中的所有数据。
我该怎么做呢?我在网上找到的所有例子都需要密钥,但我的结果中没有。
但是在加入时我得到以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Applications/Spyder.app/Contents/Resources/lib/python2.7/spyderlib/widgets/externalshell/sitecustomize.py", line 540, in runfile
execfile(filename, namespace)
File "/Users/jasonmellone/.spyder2/.temp.py", line 12, in <module>
merged = underlying.merge(options, left_on='dt1', right_on='dt2',how='outer');
File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/core/frame.py", line 3723, in merge
suffixes=suffixes, copy=copy)
File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/tools/merge.py", line 40, in merge
return op.get_result()
File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/tools/merge.py", line 197, in get_result
result_data = join_op.get_result()
File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/tools/merge.py", line 722, in get_result
return BlockManager(result_blocks, self.result_axes)
File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/core/internals.py", line 1954, in __init__
self._set_ref_locs(do_refs=True)
File "/Library/Python/2.7/site-packages/pandas-0.13.0-py2.7-macosx-10.9-intel.egg/pandas/core/internals.py", line 2091, in _set_ref_locs
'have _ref_locs set' % (block, labels))
AssertionError: Cannot create BlockManager._ref_locs because block [IntBlock: [dt1], 1 x 372145, dtype: int64] with duplicate items [Index([u'dt1', u'price', u'dt2', u'ticker', u'maturity', u'strike', u'cP', u'px', u'strike', u'yield', u'rF', u'T', u'rlzd10'], dtype='object')] does not have _ref_locs set
我搜索了我的数据集,没有重复项。
谢谢!
答案 0 :(得分:2)
您仍然可以合并列:
merged = underlying.merge(options, left_on='0', right_on='0')
这将执行内部合并,因此只有两个数据集的交集,即两列中都存在0
列中的值,如果您想要所有值,则指定outer
:
merged = underlying.merge(options, left_on='0', right_on='0', how='outer')
In [10]:
merged = underlying.merge(options, left_on='0', right_on='0', how='outer')
merged
Out[10]:
0 1_x 1_y 2 3 4 5 6 7 8 \
0 20040326 3.579987 NaN NaN NaN NaN NaN NaN NaN NaN
1 20040329 3.690494 NaN NaN NaN NaN NaN NaN NaN NaN
2 20040330 3.755247 NaN NaN NaN NaN NaN NaN NaN NaN
3 20040331 3.719373 NaN NaN NaN NaN NaN NaN NaN NaN
4 20040401 3.728671 NaN NaN NaN NaN NaN NaN NaN NaN
5 20130628 NaN SVXY 20130817 32.5 call 39.22 32.5 0 0.005
9 10
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 0.136986 0.411224
[6 rows x 12 columns]
您必须重命名或移动上面发生冲突的列1_x
和1_y
。
最好将列重命名为事先合情合理的东西。 阅读csv时,您可以传递列名列表:
df = pd.read_csv('data.csv', names=['Id', 'Price'])
答案 1 :(得分:0)
类似的问题把我带到了这个线程。我最终遇到了一个关键错误。修复是删除了从 left_on='0' 到 left_on=0 的单引号。
merged =underlying.merge(options, left_on='0', right_on='0') 合并 = 底层合并(选项,left_on=0,right_on=0)
答案 2 :(得分:-1)
如果您要使用同一列进行合并(在您的情况下确实如此),则可以简单地使用on=0
,其中0
代表两个数据框中的第一列。
import pandas as pd
merged = underlying.merge(options, on=0, how='outer')
# or
merged = pd.merge(underlying, options, on=0, how='outer')
如果两个数据框中的索引列均不同,则可以使用left_on
和right_on
本体。
# here 0 is the index column for df1 and 2 is the index column for df2
pd.merge(df1, df2, left_on=0, right_on=2, how='outer')