我正在尝试使用numpy.save创建随机矩阵并将其保存在二进制文件中
然后我尝试使用numpy.memmap映射此文件,但似乎它映射错误。
如何解决?
它似乎读取了.npy标头,我需要从开头剪掉一些字节。
rows=6
cols=4
def create_matrix(rows,cols):
data = (np.random.rand(rows,cols)*100).astype('uint8') #type for image [0 255] int8?
return data
def save_matrix(filename, data):
np.save(filename, data)
def load_matrix(filename):
data= np.load(filename)
return data
def test_mult_ram():
A= create_matrix(rows,cols)
A[1][2]= 42
save_matrix("A.npy", A)
A= load_matrix("A.npy")
print A
B= create_matrix(cols,rows)
save_matrix("B.npy", B)
B= load_matrix("B.npy")
print B
fA = np.memmap('A.npy', dtype='uint8', mode='r', shape=(rows,cols))
fB = np.memmap('B.npy', dtype='uint8', mode='r', shape=(cols,rows))
print fA
print fB
更新
我刚刚发现已存在np.lib.format.open_memmap函数。
用法: a = np.lib.format.open_memmap('A.npy',dtype ='uint8',mode ='r +')
答案 0 :(得分:4)
使用np.memmap
时,npy format有一个标题必须跳过。它以一个6字节的魔术字符串'\x93NUMPY'
,2字节版本号开头,后跟2个字节的标题长度,然后是标题数据。
因此,如果您打开文件,找到标题长度,那么您可以计算要传递给np.memmap的偏移量:
def load_npy_to_memmap(filename, dtype, shape):
# npy format is documented here
# https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.txt
with open(filename, 'r') as f:
# skip magic string \x93NUMPY + 2 bytes major/minor version number
# + 2 bytes little-endian unsigned short int
junk, header_len = struct.unpack('<8sh', f.read(10))
data= np.memmap(filename, dtype=dtype, shape=shape, offset=6+2+2+header_len)
return data
import struct
import numpy as np
np.random.seed(1)
rows = 6
cols = 4
def create_matrix(rows, cols):
data = (np.random.rand(
rows, cols) * 100).astype('uint8') # type for image [0 255] int8?
return data
def save_matrix(filename, data):
np.save(filename, data)
def load_matrix(filename):
data= np.load(filename)
return data
def load_npy_to_memmap(filename, dtype, shape):
# npy format is documented here
# https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.txt
with open(filename, 'r') as f:
# skip magic string \x93NUMPY + 2 bytes major/minor version number
# + 2 bytes little-endian unsigned short int
junk, header_len = struct.unpack('<8sh', f.read(10))
data= np.memmap(filename, dtype=dtype, shape=shape, offset=6+2+2+header_len)
return data
def test_mult_ram():
A = create_matrix(rows, cols)
A[1][2] = 42
save_matrix("A.npy", A)
A = load_matrix("A.npy")
print A
B = create_matrix(cols, rows)
save_matrix("B.npy", B)
B = load_matrix("B.npy")
print B
fA = load_npy_to_memmap('A.npy', dtype='uint8', shape=(rows, cols))
fB = load_npy_to_memmap('B.npy', dtype='uint8', shape=(cols, rows))
print fA
print fB
np.testing.assert_equal(A, fA)
np.testing.assert_equal(B, fB)
test_mult_ram()
答案 1 :(得分:2)
如果您的目标是打开使用np.save
保存的数组作为记忆库,那么您可以np.load
使用选项mmap_mode
:
fA = np.load('A.npy', mmap_mode='r')
fB = np.load('B.npy', mmap_mode='r')
这样,您实际上可以从存储在.npy
文件中的标头中受益,因为它可以跟踪数组的形状和类型。