numpy.memmap映射以保存文件

时间:2014-04-14 14:24:51

标签: python arrays python-2.7 numpy

我正在尝试使用numpy.save创建随机矩阵并将其保存在二进制文件中

然后我尝试使用numpy.memmap映射此文件,但似乎它映射错误。

如何解决?

它似乎读取了.npy标头,我需要从开头剪掉一些字节。

rows=6
cols=4

def create_matrix(rows,cols):
    data = (np.random.rand(rows,cols)*100).astype('uint8') #type for image [0 255] int8?
    return data

def save_matrix(filename, data):
    np.save(filename, data)

def load_matrix(filename):
    data= np.load(filename)
    return data

def test_mult_ram():
    A= create_matrix(rows,cols)
    A[1][2]= 42
    save_matrix("A.npy", A)
    A= load_matrix("A.npy")
    print A
    B= create_matrix(cols,rows)
    save_matrix("B.npy", B)
    B= load_matrix("B.npy")
    print B




fA = np.memmap('A.npy', dtype='uint8', mode='r', shape=(rows,cols))
fB = np.memmap('B.npy', dtype='uint8', mode='r', shape=(cols,rows))
print fA
print fB

更新

我刚刚发现已存在np.lib.format.open_memmap函数。

用法: a = np.lib.format.open_memmap('A.npy',dtype ='uint8',mode ='r +')

2 个答案:

答案 0 :(得分:4)

使用np.memmap时,npy format有一个标题必须跳过。它以一个6字节的魔术字符串'\x93NUMPY',2字节版本号开头,后跟2个字节的标题长度,然后是标题数据。

因此,如果您打开文件,找到标题长度,那么您可以计算要传递给np.memmap的偏移量:

def load_npy_to_memmap(filename, dtype, shape):
    # npy format is documented here
    # https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.txt
    with open(filename, 'r') as f:
        # skip magic string \x93NUMPY + 2 bytes major/minor version number
        # + 2 bytes little-endian unsigned short int
        junk, header_len = struct.unpack('<8sh', f.read(10))

    data= np.memmap(filename, dtype=dtype, shape=shape, offset=6+2+2+header_len)
    return data

import struct
import numpy as np
np.random.seed(1)
rows = 6
cols = 4

def create_matrix(rows, cols):
    data = (np.random.rand(
        rows, cols) * 100).astype('uint8')  # type for image [0 255] int8?
    return data

def save_matrix(filename, data):
    np.save(filename, data)

def load_matrix(filename):
    data= np.load(filename)
    return data

def load_npy_to_memmap(filename, dtype, shape):
    # npy format is documented here
    # https://github.com/numpy/numpy/blob/master/doc/neps/npy-format.txt
    with open(filename, 'r') as f:
        # skip magic string \x93NUMPY + 2 bytes major/minor version number
        # + 2 bytes little-endian unsigned short int
        junk, header_len = struct.unpack('<8sh', f.read(10))

    data= np.memmap(filename, dtype=dtype, shape=shape, offset=6+2+2+header_len)
    return data

def test_mult_ram():
    A = create_matrix(rows, cols)
    A[1][2] = 42
    save_matrix("A.npy", A)
    A = load_matrix("A.npy")
    print A
    B = create_matrix(cols, rows)
    save_matrix("B.npy", B)
    B = load_matrix("B.npy")
    print B

    fA = load_npy_to_memmap('A.npy', dtype='uint8', shape=(rows, cols))
    fB = load_npy_to_memmap('B.npy', dtype='uint8', shape=(cols, rows))
    print fA
    print fB
    np.testing.assert_equal(A, fA)
    np.testing.assert_equal(B, fB)

test_mult_ram()

答案 1 :(得分:2)

如果您的目标是打开使用np.save保存的数组作为记忆库,那么您可以np.load使用选项mmap_mode

fA = np.load('A.npy', mmap_mode='r')
fB = np.load('B.npy', mmap_mode='r')

这样,您实际上可以从存储在.npy文件中的标头中受益,因为它可以跟踪数组的形状和类型。