我制作了一个像这样的多处理函数,
import multiprocessing
import pandas as pd
import numpy as np
def _apply_df(args):
df, func, kwargs = args
return df.apply(func, **kwargs)
def apply_by_multiprocessing(df, func, **kwargs):
workers = kwargs.pop('workers')
pool = multiprocessing.Pool(processes=workers)
result = pool.map(_apply_df, [(d, func, kwargs)
for d in np.array_split(df, workers)])
pool.close()
return pd.concat(list(result))
def square(x):
return x**x
if __name__ == '__main__':
df = pd.DataFrame({'a':range(10), 'b':range(10)})
apply_by_multiprocessing(df, square, axis=1, workers=4)
## run by 4 processors
以上" apply_by_multiprocessing"可以并行执行Pandas Dataframe。但是当我进入Celery任务时,它引发了AssertionError:'工人'对象没有属性' _config'。
from celery import shared_task
@shared_task
def my_multiple_job():
df = pd.DataFrame({'a':range(10), 'b':range(10)})
apply_by_multiprocessing(df, square, axis=1, workers=4)
它的错误跟踪是这样的,
File "/Users/yong27/work/goldstar/kinmatch/utils.py", line 14, in apply_by_multiprocessing
pool = multiprocessing.Pool(processes=workers)
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/context.py", line 118, in Pool
context=self.get_context())
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/pool.py", line 146, in __init__
self._setup_queues()
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/pool.py", line 238, in _setup_queues
self._inqueue = self._ctx.SimpleQueue()
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/context.py", line 111, in SimpleQueue
return SimpleQueue(ctx=self.get_context())
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/queues.py", line 336, in __init__
self._rlock = ctx.Lock()
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/context.py", line 66, in Lock
return Lock(ctx=self.get_context())
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/synchronize.py", line 164, in __init__
SemLock.__init__(self, SEMAPHORE, 1, 1, ctx=ctx)
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/synchronize.py", line 60, in __init__
kind, value, maxvalue, self._make_name(),
File "/usr/local/Cellar/python3/3.4.0/Frameworks/Python.framework/Versions/3.4/lib/python3.4/multiprocessing/synchronize.py", line 118, in _make_name
return '%s-%s' % (process.current_process()._config['semprefix'],
AttributeError: 'Worker' object has no attribute '_config'
似乎因为芹菜工人不是正常的过程。我怎么解决这个问题?我使用的是Python3.4,Django 1.6.2,芹菜3.1.10,django-celery 3.1.9,pandas 0.12.0。
答案 0 :(得分:3)
这个问题有一个很好的答案in this other question
基本上,它是一个known issue of Celery并且提供了一个脏黑客:它对我有用,我只是在我的任务定义的同一个文件中添加了以下代码:
from celery.signals import worker_process_init
from multiprocessing import current_process
@worker_process_init.connect
def fix_multiprocessing(**kwargs):
try:
current_process()._config
except AttributeError:
current_process()._config = {'semprefix': '/mp'}
答案 1 :(得分:2)
我不知道为什么多处理不起作用,但我建议您使用芹菜组任务。
from celery import task, group
def feeds_fetch(feeds):
g = group(fetch_one.s(feed) for feed in feeds)
g.apply_async()
@task()
def fetch_one(feed):
return feed.fetch()