我已将一些定价数据读入pandas数据框,其值显示为:
$40,000*
$40000 conditions attached
我想将其剥离为数值。 我知道我可以循环并应用正则表达式
[0-9]+
到每个字段然后将结果列表重新加入,但是有一种不循环的方式吗?
由于
答案 0 :(得分:74)
您可以使用Series.str.replace
:
import pandas as pd
df = pd.DataFrame(['$40,000*','$40000 conditions attached'], columns=['P'])
print(df)
# P
# 0 $40,000*
# 1 $40000 conditions attached
df['P'] = df['P'].str.replace(r'\D+', '').astype('int')
print(df)
产量
P
0 40000
1 40000
因为\D
与任何non-decimal digit匹配。
答案 1 :(得分:12)
答案 2 :(得分:12)
你可以使用pandas的替换方法;你也可以保留千位分隔符','和小数位分隔符'。'
import pandas as pd
df = pd.DataFrame(['$40,000.32*','$40000 conditions attached'], columns=['pricing'])
df['pricing'].replace(to_replace="\$([0-9,\.]+).*", value=r"\1", regex=True, inplace=True)
print(df)
pricing
0 40,000.32
1 40000
答案 3 :(得分:6)
你不需要正则表达式。这应该有效:
df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True)
答案 4 :(得分:1)
万一有人还在读这个。我正在处理类似的问题,需要使用我用 re.sub 计算出的正则表达式来替换整列熊猫数据
要将其应用于我的整个专栏,这是代码。
#add_map is rules of replacement for the strings in pd df.
add_map = dict([
("AV", "Avenue"),
("BV", "Boulevard"),
("BP", "Bypass"),
("BY", "Bypass"),
("CL", "Circle"),
("DR", "Drive"),
("LA", "Lane"),
("PY", "Parkway"),
("RD", "Road"),
("ST", "Street"),
("WY", "Way"),
("TR", "Trail"),
])
obj = data_909['Address'].copy() #data_909['Address'] contains the original address'
for k,v in add_map.items(): #based on the rules in the dict
rule1 = (r"(\b)(%s)(\b)" % k) #replace the k only if they're alone (lookup \
b)
rule2 = (lambda m: add_map.get(m.group(), m.group())) #found this online, no idea wtf this does but it works
obj = obj.str.replace(rule1, rule2, regex=True, flags=re.IGNORECASE) #use flags here to avoid the dictionary iteration problem
data_909['Address_n'] = obj #store it!
希望这可以帮助任何寻找我遇到的问题的人。干杯