我有一个像这样的三重求和表达式
sum(l(from 1 to n))
sum(i(from 1 to m))
sum(t(from 1 to m)
[phil_z1_1[i]*phil_z1_1[t}*I(X(l)<min(y(i),y(t))]
我做了:
set.seed(1234567)
x <- rnorm(2900)
n <- length(x)
y <- rnorm(3000)*0.25
m <-length(y)
z1 <- runif(m,min=0,max=1)
z2 <- runif(m,min=0,max=1)
phil_z1_1 <- sqrt(12*(z1/z2)))
for min(y[i],y[t])
我做过像
y_m<-matrix(rep(y,length(y)),ncol=length(y))
y_m_t<-t(y_m)
y_min<-pmin(y_m_t,y_m)
扩展两个内部求和后,例如,m=2,n=3
我可以将原始表达式放入像x*A*x'
其中
x=[phil_z1_1[1] phil_z1_1[2]]
A is a 2*2 matrix
A=[sum(from 1 to n) I(x[l]<=min(y[1],y[1]), sum(from 1 to n) I(x[l]<=min(y1,y2); sum(from 1 to n) I(x[l]<=min(y[2],y[1]), sum(from 1 to n) I(x[l]<=min(y[2],y[2])]
因此,
x*A*x'=[phil_z1_1[1] phil_z1_1[2]]*[sum(from 1 to n) I(x[l]<=min(y[1],y[1]), sum(from 1 to n) I(x[l]<=min(y1,y2); sum(from 1 to n) I(x[l]<=min(y[2],y[1]), sum(from 1 to n) I(x[l]<=min(y[2],y[2])][phil_z1_1[1] phil_z1_1[2]]'
基本上我想为 A 创建am * m矩阵,其中每个单独的元素等于其相应部分的总和,例如,sum(from 1 to n)x[l]<=min(y[1],y[1])
将是a11的a11 矩阵A 我想创建
我尝试过使用
args <- expand.grid(l=1:n, i=1:m, t=1:m)
args <- subset(args, x[l] <= pmin(y[i],y[t])-z1[i]*z2[t])
args <- transform(args, result=phil_z1_1[i]*phil_z1_1[t])
sum(args[,"result"])
但是r不能运行上面的编程,因为数据集的样本量太大,大约3000。
有人可以告诉我如何解决这个问题吗?
提前致谢!
答案 0 :(得分:0)
以下是三元和的矩阵方法
set.seed(1234567)
n <- 10
x <- rnorm(n)
m <- 3000
y <- rnorm(m)/4
y_m <- pmin(matrix(rep(y,m), ncol=m, byrow=TRUE), y)
z1 <- runif(m,min=0,max=1)
z2 <- runif(m,min=0,max=1)
phi <- sqrt(12*(z1/z2))
phi_m <- phi %o% phi
f1 <- function(l) sum(phi_m * (x[l] < y_m))
sum(sapply(1:n, f1))
[1] 242034847337
它不是闪电般快,但比data.frame方法快得多
f2 <- function(lrng) {
args <- expand.grid(l=lrng, i=1:m, t=1:m)
args <- subset(args, x[l] <= pmin(y[i],y[t]))
args <- transform(args, result=phi[i]*phi[t])
sum(args[,"result"])
}
sum(sapply(1:n, f2)) # 90 times slower
[1] 242034847337