我有一个值数组, x 。给定'start'和'stop'索引,我需要使用 x 的子数组构造一个数组 y 。
import numpy as np
x = np.arange(20)
start = np.array([2, 8, 15])
stop = np.array([5, 10, 20])
nsubarray = len(start)
我希望 y :
y = array([ 2, 3, 4, 8, 9, 15, 16, 17, 18, 19])
(实际上我使用的数组要大得多)。
构建 y 的一种方法是使用列表推导,但之后需要将列表展平:
import itertools as it
y = [x[start[i]:stop[i]] for i in range(nsubarray)]
y = np.fromiter(it.chain.from_iterable(y), dtype=int)
我发现使用for循环实际上更快:
y = np.empty(sum(stop - start), dtype = int)
a = 0
for i in range(nsubarray):
b = a + stop[i] - start[i]
y[a:b] = x[start[i]:stop[i]]
a = b
我想知道是否有人知道我可以优化的方式?非常感谢你!
修改
所有时间都进行以下测试:
import numpy as np
import numpy.random as rd
import itertools as it
def get_chunks(arr, start, stop):
rng = stop - start
rng = rng[rng!=0] #Need to add this in case of zero sized ranges
np.cumsum(rng, out=rng)
inds = np.ones(rng[-1], dtype=np.int)
inds[rng[:-1]] = start[1:]-stop[:-1]+1
inds[0] = start[0]
np.cumsum(inds, out=inds)
return np.take(arr, inds)
def for_loop(arr, start, stop):
y = np.empty(sum(stop - start), dtype = int)
a = 0
for i in range(nsubarray):
b = a + stop[i] - start[i]
y[a:b] = arr[start[i]:stop[i]]
a = b
return y
xmax = 1E6
nsubarray = 100000
x = np.arange(xmax)
start = rd.randint(0, xmax - 10, nsubarray)
stop = start + 10
结果是:
In [379]: %timeit np.hstack([x[i:j] for i,j in it.izip(start, stop)])
1 loops, best of 3: 410 ms per loop
In [380]: %timeit for_loop(x, start, stop)
1 loops, best of 3: 281 ms per loop
In [381]: %timeit np.concatenate([x[i:j] for i,j in it.izip(start, stop)])
10 loops, best of 3: 97.8 ms per loop
In [382]: %timeit get_chunks(x, start, stop)
100 loops, best of 3: 16.6 ms per loop
答案 0 :(得分:3)
这有点复杂,但速度很快。基本上我们所做的是创建基于向量加法的索引列表,并使用np.take
而不是任何python循环:
def get_chunks(arr, start, stop):
rng = stop - start
rng = rng[rng!=0] #Need to add this in case of zero sized ranges
np.cumsum(rng, out=rng)
inds = np.ones(rng[-1], dtype=np.int)
inds[rng[:-1]] = start[1:]-stop[:-1]+1
inds[0] = start[0]
np.cumsum(inds, out=inds)
return np.take(arr, inds)
检查它是否返回了正确的结果:
xmax = 1E6
nsubarray = 100000
x = np.arange(xmax)
start = np.random.randint(0, xmax - 10, nsubarray)
stop = start + np.random.randint(1, 10, nsubarray)
old = np.concatenate([x[b:e] for b, e in izip(start, stop)])
new = get_chunks(x, start, stop)
np.allclose(old,new)
True
一些时间:
%timeit np.hstack([x[i:j] for i,j in zip(start, stop)])
1 loops, best of 3: 354 ms per loop
%timeit np.concatenate([x[b:e] for b, e in izip(start, stop)])
10 loops, best of 3: 119 ms per loop
%timeit get_chunks(x, start, stop)
100 loops, best of 3: 7.59 ms per loop
答案 1 :(得分:2)
也许使用zip
,np.arange
和np.hstack
:
np.hstack([np.arange(i, j) for i,j in zip(start, stop)])
答案 2 :(得分:1)
对于我来说这几乎比循环快3倍,几乎所有的时间差都来自用连接替换fromiter:
import numpy as np
from itertools import izip
y = [x[b:e] for b, e in izip(start, stop)]
y = np.concatenate(y)
答案 3 :(得分:0)
使用切片而不是np.arrays可以吗?
import numpy as np
x = np.arange(10)
start = slice(2, 8)
stop = slice(5, 10)
print np.concatenate((x[start], x[stop]))