如何调用此static inline
函数?
static inline int xGradient(uchar* image, int x, int y)
{
return ((int)(image[y-1, x-1])) +
2*image[y, x-1] +
image[y+1, x-1] -
image[y-1, x+1] -
2*image[y, x+1] -
image[y+1, x+1];
}
static inline int yGradient(uchar* image, int x, int y)
{
return ((int)(image[y-1, x-1])) +
2*image[y-1, x] +
image[y-1, x+1] -
image[y+1, x-1] -
2*image[y+1, x] -
image[y+1, x+1];
我打电话给这个功能时遇到了麻烦。我称之为:
gx = xGradient(&data[ii], x,y);
gy = yGradient(&data[ii], x,y);
sum = abs(gx) + abs(gy);
sum = sum > 255 ? 255:sum;
sum = sum < 0 ? 0 : sum;
我没有得到gx和gy的结果。帮助我计算上面程序中的gx
和gy
。
这是我的代码
#include<iostream>
#include<omp.h>
#include<ctime>
#include<cmath>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
static inline int xGradient(uchar* image, int x, int y)
{
return ((int)(image[y-1, x-1])) +
2*image[y, x-1] +
image[y+1, x-1] -
image[y-1, x+1] -
2*image[y, x+1] -
image[y+1, x+1];
}
static inline int yGradient(uchar* image, int x, int y)
{
return ((int)(image[y-1, x-1])) +
2*image[y-1, x] +
image[y-1, x+1] -
image[y+1, x-1] -
2*image[y+1, x] -
image[y+1, x+1];
}
int main()
{
Mat src, grey, grey2, dst;
clock_t start, finish;
int gx, gy, sum;
size_t total;
int sizes[2];
start = clock();
src= imread("E:/sobel/Debug/view_sea.bmp");
imwrite("E:/sobel/Debug/Serial/Citra Asli.bmp", src );
cvtColor(src,grey,CV_BGR2GRAY);
imwrite("E:/sobel/Debug/Serial/Grayscale.bmp", grey );
dst = grey.clone();
if( !grey.data )
{
return -1;
}
total=grey.total();
cv::Size s = grey.size();
sizes[0] = s.height;
sizes[1] = s.width;
cout << "citra terdiri dari " << total << " piksel dengan ukuran " << sizes[0] << " x " << sizes[1] << " piksel" << endl;
int starty=(grey.rows);
if(starty==0)
{starty=1;}
int stopy=(grey.rows);
if(stopy>grey.rows - 1)
{stopy=grey.rows - 1;}
int ii=grey.cols;
uchar* data=grey.data;
for(int y = starty; y < stopy; y++)
{
ii++;
for(int x = 1; x < sizes[1] - 1; x++)
{
gx = xGradient(&data[ii], x,y);
gy = yGradient(&data[ii], x,y);
sum = abs(gx) + abs(gy);
sum = sum > 255 ? 255:sum;
sum = sum < 0 ? 0 : sum;
data[ii] = sum;
ii++;
}
ii++;
}
finish = clock();
imwrite( "E:/sobel/Debug/Serial/Output sobel dengan Serial.bmp", src);
cout << "Waktu Eksekusi Deteksi Tepi Serial adalah : " << float(finish- start)/CLOCKS_PER_SEC << " detik" << endl;
return 0;
}
我在这段代码中出错了
int ii=grey.cols;
uchar* data=grey.data;
for(int y = starty; y < stopy; y++)
{
ii++;
for(int x = 1; x < sizes[1] - 1; x++)
{
gx = xGradient(&data[ii], x,y);
gy = yGradient(&data[ii], x,y);
sum = abs(gx) + abs(gy);
sum = sum > 255 ? 255:sum;
sum = sum < 0 ? 0 : sum;
data[ii] = sum;
ii++;
}
ii++;
}
答案 0 :(得分:4)
我想,你在这里混淆了python / numpy和c ++语法。
虽然image[y-1, x-1]
会在python中做正确的工作(给定一个2d numpy数组),
在c ++中,你只有1d uchar数组,它归结为image[x-1]
。可能不是你的预期。
做得对,你的函数还需要一个额外的参数,大小为1行(宽度):
static inline int xGradient(uchar* image, int x, int y, int W)
{
return (
image[ W*(y-1) + (x-1)] +
2*image[ W*(y) + (x-1)] +
image[ W*(y+1) + (x-1)] -
image[ W*(y-1) + (x+1)] -
2*image[ W*(y) + (x+1)] -
image[ W*(y+1) + (x+1)] );
}
但是,再次,因为我们在opencv中,为什么不使用Mat对象本身而不是原始字节:
static inline int xGradient(const Mat & img, int x, int y)
{
return (
img.at<uchar>( (y-1) , (x-1) ) +
2*img.at<uchar>( (y) , (x-1) ) +
img.at<uchar>( (y+1) , (x-1) ) -
img.at<uchar>( (y-1) , (x+1) ) -
2*img.at<uchar>( (y) , (x+1) ) -
img.at<uchar>( (y+1) , (x+1) ) );
}
// and call it :
Mat img;
int xg = xGradient(img,x,y);
请记住,在应用此功能时,您必须在图像中留出1个像素的边框,否则就会超出界限...