/*A value has even parity if it has an even number of 1 bits.
*A value has an odd parity if it has an odd number of 1 bits.
*For example, 0110 has even parity, and 1110 has odd parity.
*Return 1 iff x has even parity.
*/
int has_even_parity(unsigned int x) {
}
我不知道从哪里开始编写这个函数,我认为我将值作为数组循环并对它们应用xor操作。 会有类似下面的工作吗?如果没有,那么接近这个的方法是什么?
int has_even_parity(unsigned int x) {
int i, result = x[0];
for (i = 0; i < 3; i++){
result = result ^ x[i + 1];
}
if (result == 0){
return 1;
}
else{
return 0;
}
}
答案 0 :(得分:3)
选项#1 - 以“明显”的方式迭代这些位,位于O(位数):
int has_even_parity(unsigned int x)
{
int p = 1;
while (x)
{
p ^= x&1;
x >>= 1; // at each iteration, we shift the input one bit to the right
}
return p;
选项#2 - 仅迭代设置为1的位,为O(1位数):
int has_even_parity(unsigned int x)
{
int p = 1;
while (x)
{
p ^= 1;
x &= x-1; // at each iteration, we set the least significant 1 to 0
}
return p;
}
选项#3 - 使用SWAR算法计算1,在O(log(位数)):
http://aggregate.org/MAGIC/#Population%20Count%20%28Ones%20Count%29
答案 1 :(得分:1)
您不能将整数作为数组访问,
unsigned x = ...;
// x[0]; doesn't work
但您可以使用按位操作。
unsigned x = ...;
int n = ...;
int bit = (x >> n) & 1u; // Extract bit n, where bit 0 is the LSB
假设有32位整数,有一种聪明的方法可以做到这一点:
unsigned parity(unsigned x)
{
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return x & 1;
}