使用作为TraMineR
的一部分的生物基因数据集:
library(TraMineR)
data(biofam)
lab <- c("P","L","M","LM","C","LC","LMC","D")
biofam.seq <- seqdef(biofam[,10:25], states=lab)
head(biofam.seq)
Sequence
1167 P-P-P-P-P-P-P-P-P-LM-LMC-LMC-LMC-LMC-LMC-LMC
514 P-L-L-L-L-L-L-L-L-L-L-LM-LMC-LMC-LMC-LMC
1013 P-P-P-P-P-P-P-L-L-L-L-L-LM-LMC-LMC-LMC
275 P-P-P-P-P-L-L-L-L-L-L-L-L-L-L-L
2580 P-P-P-P-P-L-L-L-L-L-L-L-L-LMC-LMC-LMC
773 P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P
我可以执行聚类分析:
library(cluster)
couts <- seqsubm(biofam.seq, method = "TRATE")
biofam.om <- seqdist(biofam.seq, method = "OM", indel = 3, sm = couts)
clusterward <- agnes(biofam.om, diss = TRUE, method = "ward")
cluster3 <- cutree(clusterward, k = 3)
cluster3 <- factor(cluster3, labels = c("Type 1", "Type 2", "Type 3"))
但是,在此过程中,biofam.seq中的唯一ID已被数字1到N的列表所取代:
head(cluster3, 10)
[1] Type 1 Type 2 Type 2 Type 2 Type 2 Type 3 Type 3 Type 2 Type 1
[10] Type 2
Levels: Type 1 Type 2 Type 3
现在,我想知道每个簇中哪些序列,以便我可以应用其他函数来获得每个簇内的平均长度,熵,子序列,相异性等。我需要做的是:
如何在上面的列表中完成2和3?
答案 0 :(得分:1)
我认为这会回答你的问题。我使用了我在http://www.bristol.ac.uk/cmm/software/support/workshops/materials/solutions-to-r.pdf找到的代码来创建biofam.seq
,因为你所建议的都没有为我工作。
# create data
library(TraMineR)
data(biofam)
bf.states <- c("Parent", "Left", "Married", "Left/Married", "Child",
"Left/Child", "Left/Married/Child", "Divorced")
bf.shortlab <- c("P","L","M","LM","C","LC", "LMC", "D")
biofam.seq <- seqdef(biofam[, 10:25], states = bf.shortlab,
labels = bf.states)
# cluster
library(cluster)
couts <- seqsubm(biofam.seq, method = "TRATE")
biofam.om <- seqdist(biofam.seq, method = "OM", indel = 3, sm = couts)
clusterward <- agnes(biofam.om, diss = TRUE, method = "ward")
cluster3 <- cutree(clusterward, k = 3)
cluster3 <- factor(cluster3, labels = c("Type 1", "Type 2", "Type 3"))
首先,我使用split
为每个集群创建索引列表,然后在lapply
循环中使用它来创建biofam.seq
的子序列列表:< / p>
# create a list of sequences
idx.list <- split(seq_len(nrow(biofam)), cluster3)
seq.list <- lapply(idx.list, function(idx)biofam.seq[idx, ])
最后,您可以使用lapply
或sapply
# compute statistics on each sub-sequence (just an example)
cluster.sizes <- sapply(seq.list, FUN = nrow)
其中FUN
可以是您通常在单个序列上运行的任何函数。
答案 1 :(得分:1)
例如,可以使用
简单地获得第一个聚类的状态序列对象bio1.seq <- biofam.seq[cluster3=="Type 1",]
summary(bio1.seq)