您好我正在尝试创建一个正常工作的RSA程序,但在很小的层面上,我在使用此代码进行加密和解密时遇到问题,有人可以帮我弄清楚出了什么问题吗?我尝试过这么多种方式,但这种方式似乎是正确的数学,所以我相信这可能只是我缺乏编码技巧?感谢
import random, math
def RandomPrime():
prime = False
while prime == False:
n = 2
while n % 2 == 0:
n = random.randint(10000, 100000)
s = math.trunc(n**0.5)
s = int(s)
x = 3
# While n doesn't exactly divide to equal 0, and x is less then the sqrt of n
while ( n % x != 0 ) and (x <= s):
x = x + 2
# if n is greater than s, it means it has run out of numbers to test, so is prime
if x > s:
prime = True
return n
def Modulus(p, q):
M = p * q
return M
def Totient(p, q):
T = ((p-1) * (q-1))
return T
def Pubkey(T):
prime = False
while prime == False:
n = 2
while n % 2 == 0:
n = random.randint(3, T)
s = math.trunc(n**0.5)
s = int(s)
x = 3
# While
while ( n % x != 0 ) and (x <= s):
x = x + 2
if x > s:
prime = True
return n
def privkey( T, n):
y = math.fmod(1, T)
d = float((y / n))
return d
# z is my encyption in this scenario
z = 8
# I generate p and q, using my random prime generator, i used low primes in
# this example just to see if it would work but it is still not showing reults
p = RandomPrime()
q = RandomPrime()
print(p, q)
#This creates the modulus
M = Modulus(p, q)
print(M)
# Eulier's totient
T = Totient(p, q)
print(T)
#Pub key creation
n = Pubkey(T)
print(n)
#Priv key creation
d = privkey(n, T)
print(d)
enc = (pow(z, n)) % M
print('enc: ', enc)
dec = (pow(enc, d)) % M
print('dec: ', dec)
答案 0 :(得分:0)
您的privkey
函数显示错误 - 我猜你看到了RSA私钥值的定义如下:
the value "e" such that e * d = 1 mod Phi(N)
但是在这种情况下,1 mod Phi(N)
不意味着The remainder when 1 is divided by Phi(N)
(这似乎是您将其转换为代码的方式,基于您对{{1}的使用但实际上应该更像是:
the value "e" such that (e * d) mod Phi(N) = 1
此值通常使用Extended Euclidean Algorithm计算。 Python实现的示例是here。
值得注意的是,您似乎在定义math.fmod(1, T)
,但将其称为privkey(T, n)
。
答案 1 :(得分:0)
使用python检查我的博客详细包含以下内容的实现:
MD5安全散列算法RFC 1321,RSA公钥加密RFC 3447,OpenPGP RFC 4880
def keyGen():
''' Generate Keypair '''
i_p=randint(0,20)
i_q=randint(0,20)
# Instead of Asking the user for the prime Number which in case is not feasible,
# generate two numbers which is much highly secure as it chooses higher primes
while i_p==i_q:
continue
primes=PrimeGen(100)
p=primes[i_p]
q=primes[i_q]
#computing n=p*q as a part of the RSA Algorithm
n=p*q
#Computing lamda(n), the Carmichael's totient Function.
# In this case, the totient function is the LCM(lamda(p),lamda(q))=lamda(p-1,q-1)
# On the Contrary We can also apply the Euler's totient's Function phi(n)
# which sometimes may result larger than expected
lamda_n=int(lcm(p-1,q-1))
e=randint(1,lamda_n)
#checking the Following : whether e and lamda(n) are co-prime
while math.gcd(e,lamda_n)!=1:
e=randint(1,lamda_n)
#Determine the modular Multiplicative Inverse
d=modinv(e,lamda_n)
#return the Key Pairs
# Public Key pair : (e,n), private key pair:(d,n)
return ((e,n),(d,n))
博客链接:Python Cryptography
Github链接:Python Cryptography