我的程序如下所示
#include <iostream>
#include <thread>
class A {
public:
void foo(int n ) { std::cout << n << std::endl; }
};
int main()
{
A a;
std::thread t1(&A::foo, std::ref(a), 100);
t1.join();
return 0;
}
当我使用以下命令编译它时,我得到错误
g++ -o main main.cc -lpthread -std=c++11
错误:
In file included from /usr/local/include/c++/4.8.2/thread:39:0,
from check.cc:2:
/usr/local/include/c++/4.8.2/functional: In instantiation of ‘struct std::_Bind_simple<std::_Mem_fn<void (A::*)(int)>(std::reference_wrapper<A>, int)>’:
/usr/local/include/c++/4.8.2/thread:137:47: required from ‘std::thread::thread(_Callable&&, _Args&& ...) [with _Callable = void (A::*)(int); _Args = {std::reference_wrapper<A>, int}]’
check.cc:13:42: required from here
/usr/local/include/c++/4.8.2/functional:1697:61: error:no type named ‘type’ in ‘class std::result_of<std::_Mem_fn<void (A::*)(int)>(std::reference_wrapper<A>, int)>’
typedef typename result_of<_Callable(_Args...)>::type result_type;
^
/usr/local/include/c++/4.8.2/functional:1727:9: error:no type named ‘type’ in ‘class std::result_of<std::_Mem_fn<void (A::*)(int)>(std::reference_wrapper<A>, int)>’
_M_invoke(_Index_tuple<_Indices...>)
^
答案 0 :(得分:25)
这不是参考包装器的正确位置。但是,一个简单的指针就足够了,并且达到了预期的结果:
std::thread t1(&A::foo, &a, 100);
答案 1 :(得分:11)
编辑:撤回
Kerrek在这里是正确的:我错误地认为std::thread
构造函数和std::bind
是设计相同的接口。但是,在[func.bind.bind] / 10中仅为reference_wrapper<A>
指定了从A&
到std::bind
的参数自动转换:
绑定参数
v1, v2, ..., vN
及其对应类型V1, V2, ..., VN
的值取决于从TiD
调用派生的类型bind
和调用包装器g
的 cv - 限定符 cv 如下:
- 如果
TiD
为reference_wrapper<T>
,则参数为tid.get()
,其类型Vi
为T&
;- ...
reference_wrapper<A>
对std::thread
的这种特殊使用不支持std::bind
,但std::thread
支持 。在其他/较旧的编译器中std::bind
在此实例中与std::thread
的行为相同的事实是错误,而不是4.8行GCC版本的行为。
我会在这里留下错误的答案,并希望其他人在将来不会犯同样的错误。
简短(但不正确)回答
这显然是GCC 4.8附带的标准库中的一个错误。代码通过以下方式正确编译:
长(也是不正确)回答:
template <class F, class ...Args>
explicit thread(F&& f, Args&&... args);
构造函数的效果
INVOKE(DECAY_COPY(std::forward<F>(f)),
DECAY_COPY(std::forward<Args>(args))...)
详见C ++ 11 30.3.1.2 [thread.thread.constr] / 4:
新的执行线程执行
DECAY_COPY
在构造线程中对
DECAY_COPY
的调用进行评估。
DECAY_COPY(x)
在30.2.6 [thread.decaycopy] / 1:
在本条款的几个地方使用了操作
decay_copy(x)
。所有这些用法都意味着调用函数decay_copy
并使用结果,其中template <class T> typename decay<T>::type decay_copy(T&& v) { return std::forward<T>(v); }
定义如下:std::thread t1(&A::foo, std::ref(a), 100);
在OP DECAY_COPY
的调用中,所有三个参数都是INVOKE(f, t1, t2, ..., tN)
将在调用之前复制到新线程环境中的对象的rvalues,其效果在20.8.2中描述[func.require] / 1:
如下定义
(t1.*f)(t2, ..., tN)
:
- 派生的类型的对象的引用
f
当T
是指向类t1
的成员函数的指针时,T
是T
类型的对象或对{类型为T
的对象或对从((*t1).*f)(t2, ..., tN)
;f
当T
是指向类t1
的成员函数的指针时,f
不是上一项中描述的类型之一;- ...
对于OP中的代码,A
是指向类&A::foo
的成员函数的指针,其值为t1
,reference_wrapper<A>
是左值a
,存储的引用是指t2
,而int
是100
,其值为t1
。适用20.8.2 / 1的第二个子弹。由于reference_wrapper
是*t1
,(a.*&A::foo)(100);
计算存储的引用(按照20.8.3.3/1),并且新线程中的调用实际上是
class A {
public:
void foo(int n) { std::cout << n << std::endl; }
};
int main()
{
A a;
auto foo = std::bind(&A::foo, std::ref(a), 100);
foo();
}
是的,该标准完全按照预期描述了OP的行为。
编辑:奇怪的是,GCC 4.8 correctly compiles the very similar example:
{{1}}
答案 2 :(得分:10)
关于你的问题标题,我会使用lambda进行线程构建。有或没有引用,通过调用成员函数或绑定参数。
std::thread t1([&] { a.foo(100); });
答案 3 :(得分:7)
GCC 4.8是正确的,std::thread
和根据 INVOKE 定义的其他组件不得以std::bind
的形式实现。它们不能调用嵌套的绑定表达式,并且必须对绑定参数使用完美转发(而不是像std::bind
那样将它们转发为左值),另外如您发现它们不会解包reference_wrapper
个对象。在GCC 4.8中,我介绍了一个内部实现细节__bind_simple
,供std::thread
等使用,但没有完整的std::bind
行为。
虽然与std::bind
存在其他差异,但我认为 INVOKE 操作仍应支持reference_wrapper
个对象,因此我提交了一份缺陷报告,请参阅{{3} }。
答案 4 :(得分:0)
好的问题是ref(obj)向对象返回引用(别名)而不是指针(地址)!使用线程我们需要指针而不是引用!请参阅下面一个方便的程序,以使用带线程的函数指针:
#include <iostream>
#include "vector"
#include "string"
#include "thread"
#include "atomic"
#include "functional"
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "assert.h"
using namespace std;
//__________________________Global variables_________________________________________________
atomic<int> var(0);
//__________________________class____________________________________________________________
class C
{
public:
C()
{}
static void addition (int a, int b)
{
for(int i= 0; i< a+b; i++)
var++;
}
void subtraction (int a, int b)
{
for(int i= 0; i< a+b; i++)
var--;
}
};
class D : std::atomic<int>
{
public:
D() : std::atomic<int>(0)
{}
void increase_member (int n)
{
for (int i=0; i<n; ++i)
fetch_add(1);
}
int get_atomic_val()
{
return this->load();
}
};
//________________________________functions________________________________________________
void non_member_add (int a, int b)
{
for(int i= 0; i< a+b; i++)
var++;
}
//__________________________________main____________________________________________________
int main ()
{
int a=1, b=5;
// (I)...........................................static public member function (with no inheritance).........................................
void (* add_member_func_ptr)(int,int) = C::addition; // pointer to a static public member function
//defining thread pool for ststic public member_add_ptr
vector<thread> thread_pool;
for (int i=0; i<5; i++)
{
thread_pool.push_back(thread(add_member_func_ptr,a,b));
}
for(thread& thr: thread_pool)
thr.join();
cout<<"static public member function (with no inheritance)\t"<<var<<endl;
//defining thread pool for ststic public member function
var=0;
thread_pool.clear();
for (int i=0; i<5; i++)
{
thread_pool.push_back(thread(C::addition,a,b)); //void (* add_member_func_ptr)(int,int) is equal to C::addition
}
for(thread& thr: thread_pool)
thr.join();
cout<<"static public member function (with no inheritance)\t"<<var<<endl;
// (II)..............................................non-static public member function (with no inheritance)...................................
C bar;
void (C::* sub_member_func_ptr)(int,int) = & C::subtraction; // pointer to a non-static public member function
var=0;
//defining thread pool for non-ststic public member function
thread_pool.clear();
for (int i=0; i<5; i++)
{
thread_pool.push_back(thread(sub_member_func_ptr,bar,a,b));
}
for(thread& thr: thread_pool)
thr.join();
cout<<"non-static public member function (with no inheritance)\t"<<var<<endl;
var=0;
//defining thread pool for non-ststic public member function
thread_pool.clear();
for (int i=0; i<5; i++)
{
thread_pool.push_back(thread(&C::subtraction,bar,a,b)); //void (C::* sub_member_func_ptr)(int,int) equals & C::subtraction;
}
for(thread& thr: thread_pool)
thr.join();
cout<<"non-static public member function (with no inheritance)\t"<<var<<endl;
// (III)................................................non-member function .................................................
void (* non_member_add_ptr)(int,int) = non_member_add; //pointer to a non-member function
var=0;
//defining thread pool for non_member_add
thread_pool.clear();
for (int i=0; i<5; i++)
{
thread_pool.push_back(thread(non_member_add,a,b));
}
for(thread& thr: thread_pool)
thr.join();
cout<<"non-member function\t"<<var<<endl<<endl;
// (IV)...........................................non-static public member function (with inheritance).........................
D foo;
void (D::* member_func_ptr) (int) = & D::increase_member; //pointer to a non-static public member function of a derived class
//defining thread pool for non-ststic public member function of a derived class
thread_pool.clear();
for (int i=0; i<5; i++)
{
thread_pool.push_back(thread(member_func_ptr,&foo,10)); //use &foo because this is derived class!
}
for(thread& thr: thread_pool)
thr.join();
cout<<"non-static public member function (with inheritance)\t"<<foo.get_atomic_val()<<endl;
//defining thread pool for non-ststic public member function
D poo;
thread_pool.clear();
for (int i=0; i<5; i++)
{
reference_wrapper<D> poo_ref= ref(poo);
D& poo_ref_= poo_ref.get(); //ref(obj) returns a reference (alias) to an object not a pointer(address)!
D* d_ptr= &poo; //to work with thread we need pointers not references!
thread_pool.push_back(thread(&D::increase_member, d_ptr,10)); //void (D::* member_func_ptr) (int) equals & D::increase_member;
}
for(thread& thr: thread_pool)
thr.join();
cout<<"non-static public member function (with inheritance)\t"<<poo.get_atomic_val()<<endl<<endl;
return 0;
}
答案 5 :(得分:0)
只是想通过向std :: bind / std :: thread提供不兼容的参数来添加我得到了同样的错误。就像当一个更具体的指针在实际函数的签名中时,给出一个指向基类的指针。