从Numpy数组创建Pandas DataFrame:如何指定索引列和列标题?

时间:2013-12-24 15:09:07

标签: python pandas numpy

我有一个由列表列表组成的Numpy数组,表示一个带有行标签和列名的二维数组,如下所示:

data = array([['','Col1','Col2'],['Row1',1,2],['Row2',3,4]])

我希望生成的DataFrame将Row1和Row2作为索引值,将Col1,Col2作为标题值

我可以按如下方式指定索引:

df = pd.DataFrame(data,index=data[:,0]),

但是我不确定如何最好地分配列标题。

9 个答案:

答案 0 :(得分:228)

您需要将dataindexcolumns指定为DataFrame构造函数,如下所示:

>>> pd.DataFrame(data=data[1:,1:],    # values
...              index=data[1:,0],    # 1st column as index
...              columns=data[0,1:])  # 1st row as the column names

编辑:与@joris评论一样,您可能需要将上方更改为np.int_(data[1:,1:])以获得正确的数据类型。

答案 1 :(得分:30)

这是一个易于理解的解决方案

import numpy as np
import pandas as pd
# Creating a 2 dimensional numpy array
data= np.array([[ 5.8,2.8], [ 6.0,2.2]])
print(data)
>>> data
array([[ 5.8,  2.8],
   [ 6. ,  2.2]])

#Creating pandas dataframe from numpy array
dataset = pd.DataFrame({'Column1':data[:,0],'Column2':data[:,1]})
print(dataset)
   Column1  Column2
0      5.8      2.8
1      6.0      2.2

答案 2 :(得分:20)

我同意Joris;看起来你应该这样做,就像numpy record arrays一样。修改"选项2"来自this great answer,您可以这样做:

public class JavaApplication {

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args) {
        // TODO code application logic here
        int nums[] = {33,66,77,88,60,91,87,92,76,90};
        int sum = 0;
        for (int i = 0; i < 10; i++){
            sum +=nums[i];

        }    
        System.out.println("The sum is " + sum);

        int average = 0;                         Here
        for (int i = 0; i < nums.length; i++) {  |
            sum = sum + nums[i];                 |
        }
        System.out.println("Average value is " + average); and here.


        int min, max;                                        
        min = max = nums [0];
        for(int i=1; i < 10; i++) {
            if(nums[i] < min) min = nums[i];
            if(nums[i] > max) max = nums[i];
        }
        System.out.println("min and max: " + min + " " + max);


    }
}

答案 3 :(得分:3)

这可以简单地通过使用熊猫DataFrame的from_records

完成
import numpy as np
import pandas as pd
# Creating a numpy array
x = np.arange(1,10,1).reshape(-1,1)
dataframe = pd.DataFrame.from_records(x)

答案 4 :(得分:3)

添加到@ behzad.nouri的答案-我们可以创建一个帮助程序来处理这种常见情况:

def csvDf(dat,**kwargs): 
  from numpy import array
  data = array(dat)
  if data is None or len(data)==0 or len(data[0])==0:
    return None
  else:
    return pd.DataFrame(data[1:,1:],index=data[1:,0],columns=data[0,1:],**kwargs)

让我们尝试一下:

data = [['','a','b','c'],['row1','row1cola','row1colb','row1colc'],
     ['row2','row2cola','row2colb','row2colc'],['row3','row3cola','row3colb','row3colc']]
csvDf(data)

In [61]: csvDf(data)
Out[61]:
             a         b         c
row1  row1cola  row1colb  row1colc
row2  row2cola  row2colb  row2colc
row3  row3cola  row3colb  row3colc

答案 5 :(得分:1)

我认为这是一种简单直观的方法:

recent_orders=Order.objects.filter(user=2)
 for item in recent_orders:
     print(item.items.item.title)

返回:

enter image description here

但是这里有对性能的影响:

How to set the value of a pandas column as list

答案 6 :(得分:1)

下面是使用numpy数组创建熊猫数据框的简单示例。

import numpy as np
import pandas as pd

# create an array 
var1  = np.arange(start=1, stop=21, step=1).reshape(-1)
var2 = np.random.rand(20,1).reshape(-1)
print(var1.shape)
print(var2.shape)

dataset = pd.DataFrame()
dataset['col1'] = var1
dataset['col2'] = var2
dataset.head()

答案 7 :(得分:0)

    >>import pandas as pd
    >>import numpy as np
    >>data.shape
    (480,193)
    >>type(data)
    numpy.ndarray
    >>df=pd.DataFrame(data=data[0:,0:],
    ...        index=[i for i in range(data.shape[0])],
    ...        columns=['f'+str(i) for i in range(data.shape[1])])
    >>df.head()
    [![array to dataframe][1]][1]

答案 8 :(得分:0)

不是很短,但是也许可以帮助您。

创建数组

import numpy as np
import pandas as pd

data = np.array([['col1', 'col2'], [4.8, 2.8], [7.0, 1.2]])

>>> data
array([['col1', 'col2'],
       ['4.8', '2.8'],
       ['7.0', '1.2']], dtype='<U4')

创建数据框

df = pd.DataFrame(i for i in data).transpose()
df.drop(0, axis=1, inplace=True)
df.columns = data[0]
df

>>> df
  col1 col2
0  4.8  7.0
1  2.8  1.2