我的问题似乎与This Thread类似,但是,我认为我遵循建议的方法,我仍然得到一个PicklingError。当我在本地运行我的进程而不发送到IPython集群引擎时,该功能正常工作。
我正在使用带有IPyhon笔记本的zipline,所以我首先创建一个基于zipline的类.TradingAlgorithm
Cell [1]
from IPython.parallel import Client
rc = Client()
lview = rc.load_balanced_view()
Cell [2]
%%px --local # This insures that the Class and modules exist on each engine
import zipline as zpl
import numpy as np
class Agent(zpl.TradingAlgorithm): # must define initialize and handle_data methods
def initialize(self):
self.valueHistory = None
pass
def handle_data(self, data):
for security in data.keys():
## Just randomly buy/sell/hold for each security
coinflip = np.random.random()
if coinflip < .25:
self.order(security,100)
elif coinflip > .75:
self.order(security,-100)
pass
Cell [3]
from zipline.utils.factory import load_from_yahoo
start = '2013-04-01'
end = '2013-06-01'
sidList = ['SPY','GOOG']
data = load_from_yahoo(stocks=sidList,start=start,end=end)
agentList = []
for i in range(3):
agentList.append(Agent())
def testSystem(agent,data):
results = agent.run(data) #-- This is how the zipline based class is executed
#-- next I'm just storing the final value of the test so I can plot later
agent.valueHistory.append(results['portfolio_value'][len(results['portfolio_value'])-1])
return agent
for i in range(10):
tasks = []
for agent in agentList:
#agent = testSystem(agent,data) ## On its own, this works!
#-- To Test, uncomment the above line and comment out the next two
tasks.append(lview.apply_async(testSystem,agent,data))
agentList = [ar.get() for ar in tasks]
for agent in agentList:
plot(agent.valueHistory)
以下是错误产生:
PicklingError Traceback (most recent call last)/Library/Python/2.7/site-packages/IPython/kernel/zmq/serialize.pyc in serialize_object(obj, buffer_threshold, item_threshold)
100 buffers.extend(_extract_buffers(cobj, buffer_threshold))
101
--> 102 buffers.insert(0, pickle.dumps(cobj,-1))
103 return buffers
104
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
如果我用zipline.TradingAlgorithm覆盖run()方法,例如:
def run(self, data):
return 1
尝试这样的事情......
def run(self, data):
return zpl.TradingAlgorithm.run(self,data)
导致相同的PicklingError。
然后传递到引擎工作,但显然测试的内脏没有执行。由于run是zipline.TradingAlgorithm的内部方法,我不知道它做了什么,我如何确保它通过?
答案 0 :(得分:0)
看起来,Zipline Trading对象在运行后无法发送:
import zipline as zpl
class Agent(zpl.TradingAlgorithm): # must define initialize and handle_data methods
def handle_data(self, data):
pass
agent = Agent()
pickle.dumps(agent)[:32] # ok
agent.run(data)
pickle.dumps(agent)[:32] # fails
但这告诉我你应该在引擎上创建代理,并且只来回传递数据/结果(理想情况下,根本不传递数据,或者最多传递一次)。
最小化数据传输可能如下所示:
定义类:
%%px
import zipline as zpl
import numpy as np
class Agent(zpl.TradingAlgorithm): # must define initialize and handle_data methods
def initialize(self):
self.valueHistory = []
def handle_data(self, data):
for security in data.keys():
## Just randomly buy/sell/hold for each security
coinflip = np.random.random()
if coinflip < .25:
self.order(security,100)
elif coinflip > .75:
self.order(security,-100)
加载数据
%%px
from zipline.utils.factory import load_from_yahoo
start = '2013-04-01'
end = '2013-06-01'
sidList = ['SPY','GOOG']
data = load_from_yahoo(stocks=sidList,start=start,end=end)
agent = Agent()
并运行代码:
def testSystem(agent, data):
results = agent.run(data) #-- This is how the zipline based class is executed
#-- next I'm just storing the final value of the test so I can plot later
agent.valueHistory.append(results['portfolio_value'][len(results['portfolio_value'])-1])
# create references to the remote agent / data objects
agent_ref = parallel.Reference('agent')
data_ref = parallel.Reference('data')
tasks = []
for i in range(10):
for j in range(len(rc)):
tasks.append(lview.apply_async(testSystem, agent_ref, data_ref))
# wait for the tasks to complete
[ t.get() for t in tasks ]
绘制结果,不要自己取代代理
%matplotlib inline
import matplotlib.pyplot as plt
for history in rc[:].apply_async(lambda : agent.valueHistory):
plt.plot(history)
这与您共享的代码不完全相同 - 三个代理在您的所有引擎上来回反复,而每个引擎都有代理。我对zipline不够了解,说明这对你是否有用。