IPython集群和PicklingError

时间:2013-12-21 01:18:47

标签: python ipython pickle ipython-notebook zipline

我的问题似乎与This Thread类似,但是,我认为我遵循建议的方法,我仍然得到一个PicklingError。当我在本地运行我的进程而不发送到IPython集群引擎时,该功能正常工作。

我正在使用带有IPyhon笔记本的zipline,所以我首先创建一个基于zipline的类.TradingAlgorithm

Cell [1]

from IPython.parallel import Client
rc = Client()
lview = rc.load_balanced_view()

Cell [2]

%%px --local  # This insures that the Class and modules exist on each engine
import zipline as zpl
import numpy as np

class Agent(zpl.TradingAlgorithm):  # must define initialize and handle_data methods
    def initialize(self):
        self.valueHistory = None
        pass

    def handle_data(self, data):
        for security in data.keys():
            ## Just randomly buy/sell/hold for each security
            coinflip = np.random.random()
            if coinflip < .25:
                self.order(security,100)
            elif coinflip > .75:
                self.order(security,-100)
        pass

Cell [3]

from zipline.utils.factory import load_from_yahoo

start = '2013-04-01'
end   = '2013-06-01'
sidList = ['SPY','GOOG']
data = load_from_yahoo(stocks=sidList,start=start,end=end)

agentList = []
for i in range(3):
    agentList.append(Agent())

def testSystem(agent,data):
    results = agent.run(data)  #-- This is how the zipline based class is executed
    #-- next I'm just storing the final value of the test so I can plot later
    agent.valueHistory.append(results['portfolio_value'][len(results['portfolio_value'])-1])
    return agent

for i in range(10):
    tasks = []
    for agent in agentList:
        #agent = testSystem(agent,data)  ## On its own, this works!
        #-- To Test, uncomment the above line and comment out the next two 
        tasks.append(lview.apply_async(testSystem,agent,data))
    agentList = [ar.get() for ar in tasks]

for agent in agentList:
    plot(agent.valueHistory)

以下是错误产生:

PicklingError                             Traceback (most recent call last)/Library/Python/2.7/site-packages/IPython/kernel/zmq/serialize.pyc in serialize_object(obj, buffer_threshold, item_threshold)
    100         buffers.extend(_extract_buffers(cobj, buffer_threshold))
    101 
--> 102     buffers.insert(0, pickle.dumps(cobj,-1))
    103     return buffers
    104 
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

如果我用zipline.TradingAlgorithm覆盖run()方法,例如:

def run(self, data):
    return 1

尝试这样的事情......

def run(self, data):
    return zpl.TradingAlgorithm.run(self,data)

导致相同的PicklingError。

然后传递到引擎工作,但显然测试的内脏没有执行。由于run是zipline.TradingAlgorithm的内部方法,我不知道它做了什么,我如何确保它通过?

1 个答案:

答案 0 :(得分:0)

看起来,Zipline Trading对象在运行后无法发送:

import zipline as zpl

class Agent(zpl.TradingAlgorithm):  # must define initialize and handle_data methods
    def handle_data(self, data):
        pass

agent = Agent()
pickle.dumps(agent)[:32] # ok

agent.run(data)
pickle.dumps(agent)[:32] # fails

但这告诉我你应该在引擎上创建代理,并且只来回传递数据/结果(理想情况下,根本不传递数据,或者最多传递一次)。

最小化数据传输可能如下所示:

定义类:

%%px
import zipline as zpl
import numpy as np

class Agent(zpl.TradingAlgorithm):  # must define initialize and handle_data methods
    def initialize(self):
        self.valueHistory = []

    def handle_data(self, data):
        for security in data.keys():
            ## Just randomly buy/sell/hold for each security
            coinflip = np.random.random()
            if coinflip < .25:
                self.order(security,100)
            elif coinflip > .75:
                self.order(security,-100)

加载数据

%%px
from zipline.utils.factory import load_from_yahoo

start = '2013-04-01'
end   = '2013-06-01'
sidList = ['SPY','GOOG']

data = load_from_yahoo(stocks=sidList,start=start,end=end)
agent = Agent()

并运行代码:

def testSystem(agent, data):
    results = agent.run(data)  #-- This is how the zipline based class is executed
    #-- next I'm just storing the final value of the test so I can plot later
    agent.valueHistory.append(results['portfolio_value'][len(results['portfolio_value'])-1])

# create references to the remote agent / data objects
agent_ref = parallel.Reference('agent')
data_ref =  parallel.Reference('data')

tasks = []
for i in range(10):
    for j in range(len(rc)):
        tasks.append(lview.apply_async(testSystem, agent_ref, data_ref))
# wait for the tasks to complete
[ t.get() for t in tasks ]

绘制结果,不要自己取代代理

%matplotlib inline
import matplotlib.pyplot as plt

for history in rc[:].apply_async(lambda : agent.valueHistory):
    plt.plot(history)

这与您共享的代码不完全相同 - 三个代理在您的所有引擎上来回反复,而每个引擎都有代理。我对zipline不够了解,说明这对你是否有用。