我有一个如下数据框:
df <- data.frame(bee.num=c(1,1,1,2,2,3,3), plant=c("d","d","w","d","d","w","d"))
df$visits = list(1:3, 4:9, 10:11, 1:10, 11:12, 1:4,5:11)
df
bee.num plant visits
1 1 d 1, 2, 3
2 1 d 4, 5, 6, 7, 8, 9
3 1 w 10, 11
4 2 d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5 2 d 11, 12
6 3 w 1, 2, 3, 4
7 3 d 5, 6, 7, 8, 9, 10, 11
我想聚合bee.num和plant的访问,其功能是根据匹配的bee.num和植物值连接访问值,如下所示
bee.num plant visits
1 1 d 1, 2, 3, 4, 5, 6, 7, 8, 9
2 1 w 10, 11
3 2 d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
4 3 w 1, 2, 3, 4
5 3 d 5, 6, 7, 8, 9, 10, 11
我试过
aggregate.data.frame(df$visits, by=list(bee.num = df$bee.num, plant = df$plant), FUN=c)
和
aggregate.data.frame(df$visits, by=list(bee.num = df$bee.num, plant = df$plant), FUN=unlist)
但我总是得到一个“参数意味着不同的行数”错误。任何帮助将不胜感激。提前谢谢。
答案 0 :(得分:3)
如果将包含列表的数据框作为列传递,而不是传递列表本身,则该函数按预期工作。
x <- aggregate.data.frame(df['visits'], list(df$bee.num, df$plant) , FUN=c)
names(x) <- c('bee.num', 'plant', 'visits')
x
## bee.num plant visits
## 1 1 d 1, 2, 3, 4, 5, 6, 7, 8, 9
## 2 2 d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
## 3 3 d 5, 6, 7, 8, 9, 10, 11
## 4 1 w 10, 11
## 5 3 w 1, 2, 3, 4
注意:
> class(df$visits)
[1] "list"
> class(df['visits'])
[1] "data.frame"
因此,在上面调用aggregate
就足够了。
另请注意,错误来自于尝试将列表强制转换为数据框。 aggregate.data.frame
的前两行如下:
if (!is.data.frame(x))
x <- as.data.frame(x)
将此应用于df$visits
会导致:
as.data.frame(df$visits)
## Error in data.frame(1:3, 4:9, 10:11, 1:10, 11:12, 1:4, 5:11, check.names = TRUE, :
## arguments imply differing number of rows: 3, 6, 2, 10, 4, 7
只能将“矩形”列表强制转换为data.frame
。所有条目的长度必须相同。
答案 1 :(得分:1)
如果您先unlist
list
列,您也可以获取您正在寻找的输出,然后将其设为data.frame
以便开头:
visits <- unlist(df$visits, use.names=FALSE)
df <- df[rep(rownames(df), sapply(df$visits, length)), c("bee.num", "plant")]
df$visits <- visits
aggregate.data.frame(df$visits, by=list(bee.num = df$bee.num, plant = df$plant), FUN=c)
# bee.num plant x
# 1 1 d 1, 2, 3, 4, 5, 6, 7, 8, 9
# 2 2 d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
# 3 3 d 5, 6, 7, 8, 9, 10, 11
# 4 1 w 10, 11
# 5 3 w 1, 2, 3, 4
## Or, better yet:
aggregate(visits ~ bee.num + plant, df, c)
顺便说一句,“data.table”可以处理此列表并直接取消列出:
library(data.table)
DT <- data.table(df)
setkey(DT, bee.num, plant)
DT[, list(visits = list(unlist(visits))), by = key(DT)]
# bee.num plant visits
# 1: 1 d 1,2,3,4,5,6,
# 2: 1 w 10,11
# 3: 2 d 1,2,3,4,5,6,
# 4: 3 d 5,6,7,8,9,10,
# 5: 3 w 1,2,3,4
只有的输出看起来被截断。所有信息都在那里:
str(.Last.value)
# Classes ‘data.table’ and 'data.frame': 5 obs. of 3 variables:
# $ bee.num: num 1 1 2 3 3
# $ plant : Factor w/ 2 levels "d","w": 1 2 1 1 2
# $ visits :List of 5
# ..$ : int 1 2 3 4 5 6 7 8 9
# ..$ : int 10 11
# ..$ : int 1 2 3 4 5 6 7 8 9 10 ...
# ..$ : int 5 6 7 8 9 10 11
# ..$ : int 1 2 3 4
# - attr(*, "sorted")= chr "bee.num" "plant"
# - attr(*, ".internal.selfref")=<externalptr>
答案 2 :(得分:0)
在回答您的具体问题时,我认为aggregate.data.frame不会轻易做到这一点。
正如我在之前的帖子中所述,大多数R用户可能会想出一种在plyr
中执行此操作的方法。
然而,由于我第一次接触数据分析是通过数据库脚本编写的,所以我仍然偏向sqldf
这些类型的任务。
我还发现SQL对非R用户更加透明(我在社交科学社区经常遇到的事情,我做了大部分工作)。
以下是使用sqldf
解决问题的方法:
#your data assigned to dat
bee.num <- c(1,1,1,2,2,3,3)
plant <- c("d", "d", "w", "d", "d", "w", "d")
visits <- c("1, 2, 3"
,"4, 5, 6, 7, 8, 9"
,"10, 11"
,"1, 2, 3, 4, 5, 6, 7, 8, 9, 10"
,"11, 12"
,"1, 2, 3, 4"
,"5, 6, 7, 8, 9, 10, 11")
dat <- as.data.frame(cbind(bee_num, plant, visits))
#load sqldf
require(sqldf)
#write a simple SQL aggregate query using group_concat()
#i.e. "select" your fields specifying the aggregate function for the
#relevant field, "from" a table called dat, and "group by" bee_num
#(because sql_df converts "." into "_" for field names) and plant.
sqldf('select
bee_num
,plant
,group_concat(visits) visits
from dat
group by
bee_num
,plant')
bee_num plant visits
1 1 d 1, 2, 3,4, 5, 6, 7, 8, 9
2 1 w 10, 11
3 2 d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12
4 3 d 5, 6, 7, 8, 9, 10, 11
5 3 w 1, 2, 3, 4