我正在尝试使用scipy.stats.chisquare
。我已经建立了一个玩具示例:
In [1]: import scipy.stats as sps
In [2]: import numpy as np
In [3]: sps.chisquare(np.array([38,27,23,17,11,4]), np.array([98, 100, 80, 85,60,23]))
Out[11]: (240.74951271813072, 5.302429887719704e-50)
R
中的相同示例返回:
> chisq.test(matrix(c(38,27,23,17,11,4,98,100,80,85,60,23), ncol=2))
Pearson's Chi-squared test
data: matrix(c(38, 27, 23, 17, 11, 4, 98, 100, 80, 85, 60, 23), ncol = 2)
X-squared = 7.0762, df = 5, p-value = 0.215
我做错了什么?
由于
答案 0 :(得分:9)
对于这个chisq.test
调用,python等价物是chi2_contingency
:
该函数计算观察到的频率in the contingency table的独立性假设检验的卡方统计量和p值。
>>> arr = np.array([38,27,23,17,11,4,98,100,80,85,60,23]).reshape(2,-1)
>>> arr
array([[ 38, 27, 23, 17, 11, 4],
[ 98, 100, 80, 85, 60, 23]])
>>> chi2, p, dof, expected = scipy.stats.chi2_contingency(arr)
>>> chi2, p, dof
(7.0762165124844367, 0.21503342516989818, 5)