我知道这里已经有类似的问题,但没有答案对我有帮助。
这是我的问题:
我已经给出了一个512x512像素的数组。每个像素的值都是165.88009。(我必须在GnuPlot中创建热图)
现在我想"平稳"它通过创建可变像素块的平均值(如4-16)并将其写入新的2D数组并跳转到下一个块直到完成为止。
数组的大小应该保持不变。因此,如果我平均4个像素,则这4个像素获得新值
我为此做了一个功能,但它没有正常工作。
计算平均值不是我的问题。问题是我想要变量像素宽度,但我不知道如何让我的算法跳转到下一个块。
我没有C +经验,也许我必须完全不同
所以任何帮助或灵感都非常感谢:)左
这是我的代码:
#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
using namespace std;
int i, j, m, n, k;
void Average(double **Data, int width) // width gets defined and initiated in main
{
double sum;
double avg;
fstream Output;
Output.open( "GemittelteWerte.dat", ios::out);
double** IV_Matrix = new double* [m];
for (int i=0; i<m; i++)
{
IV_Matrix[i] = new double [n];
}
for (int i=0; i<m; i++)
{
for (int j=0; j<n; j++)
{
IV_Matrix[i][j] = 1.0;
}
}
// Here start all my troubles:
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j+=width)
{
sum = 0.0;
k=j;
for( k; k<(j+width); k++)
{
sum+=Data[i][k];
}
avg=(sum/width);
for (int k; k<(j+width); k++)
{
IV_Matrix[i][k] = avg;
}
}
}
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
Output<<setprecision(10)<<IV_Matrix[i][j]<<"\t";
}
Output<<"\n";
}
Output.close();
}
答案 0 :(得分:0)
//di means diagonal index
for(int di = 0; di < n/width; ++di) {
int sum = 0.0;
//we sum the values
for(int i = di*width; i < (di+1)*width; ++i)
{
for(int j = di*width; j < (di+1)*width; ++j)
{
sum += Data[i][j];
}
}
//Divide by the number of values
sum /= width*width;
//Spread the results
for(int i = di*width; i < (di+1)*width; ++i)
{
for(int j = di*width; j < (di+1)*width; ++j)
{
IV_Matrix[i][j];
}
}
}
//n might not be a multiple of width
if(n % width != 0) {
//we sum the values
for(int i = (n/width)*width; i < n; ++i)
{
for(int j = di*width; j < (di+1)*width; ++j)
{
sum += Data[i][j];
}
}
//Divide by the number of values
sum /= width*width;
//Spread the results
for(int i = (n/width)*width; i < n; ++i)
{
for(int j = (n/width)*width; j < n; ++j)
IV_Matrix[i][j];
}
}
}
答案 1 :(得分:0)
这个块是2D块(4 = 2x2,16 = 4x4)吗?你只是想做2D卷积?然后更好地使用奇数宽度与3x3,5x5,...内核。
// int x, y are the dimensions of your image
double get (double **img, int i, int j) // zero padding for areas outside image
{
if (i<0 || i>=x || j<0 || j>=y)
return 0;
else
return img[i][j];
}
void conv (double **img, double **result, int width2) // kernel is (2*width2+1)^2
{
double sum;
for (int i=0; i<x; i++)
for (int j=0; j<y; j++)
{
sum = 0;
for (int ii=-width2; ii<=width2; ii++)
for (int jj=-width2; jj<=width2; jj++)
sum += get(img,i+ii,j+jj) / ((2*width2+1)*(2*width2+1));
result[i][j] = sum;
}
}
这会使img变得平滑。然而,它是一个缓慢的未分离的解决方案。对于小图像和内核没问题。
修改:然后更容易:
// x, y are the dimensions of your image (x rows, y colums)
void avg (double **img, double **result, int width) // width must be >= 1 and
{ // should be a divider of y
double sum;
for (int i=0; i<x; i++) // process all rows
{
for (int j=0; j<y; j+=width) // jump in block width through a row
{
sum = 0.0;
for (int w=0; w<width; w++) // calculate average of a block
{
sum += img[i][j+w] / width;
}
for (int b=0; b<width; b++) // write average in each pixel inside block
{
result[i][j+b]= sum;
}
}
}