我想只查看RGB图像中的R + G通道,因为当蓝色通道被移除时,我会更好地对比检测对象。我使用OpenCV来分割通道,但是在将蓝色通道设置为0之后合并它时,我的代码无法编译。
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{
if( argc != 2)
{
cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
return -1;
}
Mat image,fin_img;
image = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file
if(! image.data ) // Check for invalid input
{
cout << "Could not open or find the image" << std::endl ;
return -1;
}
namedWindow( "Display window", CV_WINDOW_AUTOSIZE );// Create a window for display.
// Show our image inside it.
// Create Windows
namedWindow("Red",1);
namedWindow("Green",1);
namedWindow("Blue",1);
// Create Matrices (make sure there is an image in input!)
Mat channel[3];
imshow( "Original Image", image );
// The actual splitting.
split(image, channel);
channel[0]=Mat::zeros(Size(image.rows, image.cols), CV_8UC1);//Set blue channel to 0
//Merging red and green channels
merge(channel,image);
imshow("R+G", image);
waitKey(0);//Wait for a keystroke in the window
return 0;
}
我可以对我出错的地方有任何反馈意见吗?我怀疑它是将蓝色通道设置为0.有没有更好的方法将其设置为0?有没有办法使用cvMixChannels()来做到这一点?
答案 0 :(得分:32)
您需要更改这些行
channel[0]=Mat::zeros(Size(image.rows, image.cols), CV_8UC1);//Set blue channel to 0
//Merging red and green channels
merge(channel,image);
到
channel[0]=Mat::zeros(image.rows, image.cols, CV_8UC1);//Set blue channel to 0
//Merging red and green channels
merge(channel,3,image);
修改强>
根据您的评论,这里是完整的代码和结果。
#include <iostream>
#include "opencv2/opencv.hpp"
#include <stdio.h>
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{
if( argc != 2)
{
cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
return -1;
}
Mat image,fin_img;
image = imread("bgr.png", CV_LOAD_IMAGE_COLOR); // Read the file
if(! image.data ) // Check for invalid input
{
cout << "Could not open or find the image" << std::endl ;
return -1;
}
namedWindow( "Display window", CV_WINDOW_AUTOSIZE );// Create a window for display.
// Show our image inside it.
// Create Windows
namedWindow("Red",1);
namedWindow("Green",1);
namedWindow("Blue",1);
// Create Matrices (make sure there is an image in input!)
Mat channel[3];
imshow( "Original Image", image );
// The actual splitting.
split(image, channel);
channel[0]=Mat::zeros(image.rows, image.cols, CV_8UC1);//Set blue channel to 0
//Merging red and green channels
merge(channel,3,image);
imshow("R+G", image);
imwrite("dest.jpg",image);
waitKey(0);//Wait for a keystroke in the window
return 0;
}
来源图片
没有蓝色组件的结果
答案 1 :(得分:6)
好吧,我开始使用mixChannels():我在上面的代码片段中添加了一个附加内容:
Mat gr( image.rows, image.cols, CV_8UC3);
// forming an array of matrices is a quite efficient operation,
// because the matrix data is not copied, only the headers
Mat out[] = {gr};
// bgr[1] -> gr[1],
// bgr[2] -> gr[2],
int from_to[] = {1,1, 2,2 };
mixChannels( &image, 1, out, 2, from_to, 2 );
imshow("R+G",gr);
由于 戒日
答案 2 :(得分:6)
执行此操作的最有效方法是不进行任何拆分和合并。这节省了时间和内存。
使用cv::Scalar(0,255,255)
按位与您的图像进行对比,这会将您的蓝色通道设置为零。
如:imshow("R+G", src & cv::Scalar(0,255,255));
。
答案 3 :(得分:4)
另一种方法是从源图像中减去Scalar(255,0,0)
#include <opencv2/opencv.hpp>
using namespace cv;
int main(int argc, char **argv)
{
Mat src = imread(argv[1], CV_LOAD_IMAGE_COLOR);
imshow("src", src );
src -= Scalar(255,0,0);
imshow("Green and Red channels", src );
waitKey();
return 0;
}