我试图对两个小函数进行Cython化,这些函数主要处理numpy ndarray用于某些科学目的。这两个小函数在遗传算法中被称为数百万次,占算法占用的大部分时间。
我自己取得了一些进展并且都很好地工作,但我只获得了很小的速度提升(10%)。更重要的是,cython --annotate表明大部分代码仍然通过Python。
此函数的目的是获取数据切片,并在内部嵌套循环中调用数百万次。根据数据[1] [1]中的bool,我们要么以正序或反向顺序得到切片。
#Ipython notebook magic for cython
%%cython --annotate
import numpy as np
from scipy import signal as scisignal
cimport cython
cimport numpy as np
def get_signal(data):
#data[0] contains the data structure containing the numpy arrays
#data[1][0] contains the position to slice
#data[1][1] contains the orientation to slice, forward = 0, reverse = 1
cdef int halfwinwidth = 100
cdef int midpoint = data[1][0]
cdef int strand = data[1][1]
cdef int start = midpoint - halfwinwidth
cdef int end = midpoint + halfwinwidth
#the arrays we want to slice
cdef np.ndarray r0 = data[0]['normals_forward']
cdef np.ndarray r1 = data[0]['normals_reverse']
cdef np.ndarray r2 = data[0]['normals_combined']
if strand == 0:
normals_forward = r0[start:end]
normals_reverse = r1[start:end]
normals_combined = r2[start:end]
else:
normals_forward = r1[end - 1:start - 1: -1]
normals_reverse = r0[end - 1:start - 1: -1]
normals_combined = r2[end - 1:start - 1: -1]
#return the result as a tuple
row = (normals_forward,
normals_reverse,
normals_combined)
return row
这个获取numpy数组的元组列表,我们想要明智地添加数组元素,然后将它们标准化并获得交集的集成。
def calculate_signal(list signal):
cdef int halfwinwidth = 100
cdef np.ndarray profile_normals_forward = np.zeros(halfwinwidth * 2, dtype='f')
cdef np.ndarray profile_normals_reverse = np.zeros(halfwinwidth * 2, dtype='f')
cdef np.ndarray profile_normals_combined = np.zeros(halfwinwidth * 2, dtype='f')
#b is a tuple of 3 np.ndarrays containing 200 floats
#here we add them up elementwise
for b in signal:
profile_normals_forward += b[0]
profile_normals_reverse += b[1]
profile_normals_combined += b[2]
#normalize the arrays
cdef int count = len(signal)
#print "Normalizing to number of elements"
profile_normals_forward /= count
profile_normals_reverse /= count
profile_normals_combined /= count
intersection_signal = scisignal.detrend(np.fmin(profile_normals_forward, profile_normals_reverse))
intersection_signal[intersection_signal < 0] = 0
intersection = np.sum(intersection_signal)
results = {"intersection": intersection,
"profile_normals_forward": profile_normals_forward,
"profile_normals_reverse": profile_normals_reverse,
"profile_normals_combined": profile_normals_combined,
}
return results
感谢任何帮助 - 我尝试使用内存视图但由于某种原因,代码变得更慢,更慢。
答案 0 :(得分:0)
在修复了数组cdef之后(如前所示,指定了dtype),你应该把例程放在一个cdef函数中(只能在同一个脚本中用def函数调用)。
在函数的声明中,你需要提供类型(以及尺寸,如果它是一个数组numpy):
cdef get_signal(numpy.ndarray[DTYPE_t, ndim=3] data):
我不确定使用dict是个好主意。您可以使用numpy的列或行切片,如数据[:,0]。