我有这样的结构:
template<typename... Ts>
struct List {}
typedef List<char,List<int,float,List<int,unsigned char>>,List<unsigned,short>> MyList;
我想基本上把它压扁到一个列表。什么是最好的方法?如果我把它弄得足够长,我想我可以用递归制作一些东西,但有些东西告诉我应该有更好的方法。
上述树的结果应该与此类似:
typedef List<char,int,float,int,unsigned char,unsigned,short> FlattenedList;
这是我的第一次尝试:
template<typename... Ts>
struct List{};
template<typename... Ts>
struct FlattenTree{
typedef List<Ts...> Type;
};
template<typename... Ts, typename... Us, typename... Vs>
struct FlattenTree<Ts...,List<Us...>,Vs...>{
typedef typename FlattenTree<Ts..., Us..., Vs...>::Type Type;
};
但会导致此错误:error C3515: if an argument for a class template partial specialization is a pack expansion it shall be the last argument
rici指出here MSVC2013抱怨的是什么,所以这里没有编译错误:
§14.8.2.5(从类型中推导出模板参数)第5段列出了无法推导出模板参数的上下文。相关的是列表中的最后一个:
— A function parameter pack that does not occur at the end of the parameter-declaration-clause.
更新
我想可以在最后输入一个虚拟参数,继续将第一个参数移动到结尾或者将它扩展到前面,如果它是一个List并专注于第一个参数是我的虚拟来停止递归。对于编译器而言,这似乎只是为了压缩列表而做了很多工作。
namespace Detail{
struct MyMagicType {};
template<typename T, typename... Ts>
struct FlattenTree{
typedef typename FlattenTree<Ts..., T>::Type Type;
};
template<typename... Ts>
struct FlattenTree<MyMagicType,Ts...>{ //termination case
typedef List<Ts...> Type;
};
template<typename... Ts, typename... Us>
struct FlattenTree<List<Ts...>, Us...>{
typedef typename FlattenTree<Ts..., Us...>::Type Type;
}; //expand Ts to front because they may hold more nested Lists
}
template<typename... Ts>
struct FlattenTree{
typedef typename Detail::FlattenTree<Ts...,Detail::MyMagicType>::Type Type;
};
这适用于MSVC2013,但我不认为它是最好的方法,因为我需要一个虚拟类型,它给编译器带来了很多负担。我想将它与包含500多个元素的列表一起使用。
答案 0 :(得分:2)
你的解决方案是非常优雅的IMO,这是我头脑中的另一个:
// the tuple-like class we want to flatten
// (i.e. the node of the tree, with several children as template parameters)
template<class... TT>
struct List
{};
// a join metafunction. Joins multiple Lists into a single List
// e.g. List<TT1...>, List<TT2...>, etc., List<TTN...>
// => List<TT1..., TT2..., etc., TTN...>
// requires: all template arguments are `List<..>`s
template<class... TT>
struct join
{
using type = List<>; // end recursion for no parameters
};
template<class... TT>
struct join<List<TT...>>
{
using type = List<TT...>; // end recursion for a single parameter
};
template<class... TT0, class... TT1, class... TT2>
struct join<List<TT0...>, List<TT1...>, TT2...>
{
// join two adjacent lists into one, recurse
// by joining the two lists `List<TT0...>` and `List<TT1...>`,
// we get one template argument less for the next instantiation of `join`
// this recurs until there's only one argument left, which then
// matches the specialization `struct join<List<TT...>>`
using type = typename join< List<TT0..., TT1...>, TT2... > :: type;
};
// the flatten metafunction
// guarantees (all specializations): the nested `type` is a flat `List<..>`
template<class T>
struct flatten
{
// because of the partial specialization below,
// this primary template is only used if `T` is not a `List<..>`
using type = List<T>; // wrap the argument in a `List`
};
template<class... TT>
struct flatten<List<TT...>> // if the argument is a `List` of multiple elements
{
// then flatten each element of the `List` argument
// and join the resulting `List<..>`s
using type = typename join<typename flatten<TT>::type...>::type;
// ex. the argument is `List<List<int>, List<double>>`
// then `TT...` is deduced to `List<int>, List<double>`
// `List<int>` flattened is `List<int>`, similarly for `List<double>`
// `join< List<int>, List<double> >` yields `List<int, double>`
};
用法和测试代码:
#include <iostream>
template<class T>
void print(T)
{
std::cout << __PRETTY_FUNCTION__ << "\n"; // NON-STANDARD
}
int main()
{
typedef List<char,List<int,float,List<int,unsigned char>>,
List<unsigned,short>> MyList;
print( flatten<MyList>::type{} );
}
我确信最简单的方法是使用boost :: MPL;)
答案 1 :(得分:2)
另一种方法是使用辅助类和累加器列表而不是MyMagicType
。我们从空List<>
开始,然后用输入列表中的类型填充它:
#include <type_traits>
template <class... Ts> struct List {};
// first parameter - accumulator
// second parameter - input list
template <class T, class U>
struct flatten_helper;
// first case - the head of the List is List too
// expand this List and continue
template <class... Ts, class... Heads, class... Tail>
struct flatten_helper<List<Ts...>, List<List<Heads...>, Tail...>> {
using type = typename flatten_helper<List<Ts...>, List<Heads..., Tail...>>::type;
};
// second case - the head of the List is not a List
// append it to our new, flattened list
template <class... Ts, class Head, class... Tail>
struct flatten_helper<List<Ts...>, List<Head, Tail...>> {
using type = typename flatten_helper<List<Ts..., Head>, List<Tail...>>::type;
};
// base case - input List is empty
// return our flattened list
template <class... Ts>
struct flatten_helper<List<Ts...>, List<>> {
using type = List<Ts...>;
};
// wrapper around flatten_helper
template <class T> struct flatten;
// start with an empty accumulator
template <class... Ts>
struct flatten<List<Ts...>> {
using type = typename flatten_helper<List<>, List<Ts...>>::type;
};
auto main() -> int {
using Types = List<int, List<float, List<double, List<char>>>>;
using Flat = flatten<Types>::type;
static_assert(std::is_same<Flat, List<int, float, double, char>>::value, "Not the same");
}
答案 2 :(得分:0)
以下是我使用泛型&#34; Meta-Tree-Traversal&#34;的解决方案:
#include <iostream>
#include <type_traits>
#include <typeinfo>
template <typename T>
struct HasChildren : std::false_type {};
template <template <typename...> class P, typename... Types>
struct HasChildren<P<Types...>> : std::true_type {};
template <typename, typename> struct Visit;
template <typename, typename, bool> struct VisitHelper;
template <typename, typename> struct LeafAction;
// Here the role of P2<Visited...> is simply to allow LeafAction to carry out its function. It is not native to the tree structure itself.
template <template <typename...> class P1, template <typename...> class P2, typename First, typename... Rest, typename... Visited>
struct Visit<P1<First, Rest...>, P2<Visited...>> :
VisitHelper<P1<First, Rest...>, P2<Visited...>, HasChildren<First>::value> {};
template <template <typename...> class P1, template <typename...> class P2, typename... Visited>
struct Visit<P1<>, P2<Visited...>> { // End of recursion. Every leaf in the tree visited.
using result = P2<Visited...>;
};
// Here First has children, so visit its children, after which visit Rest...
template <template <typename...> class P1, template <typename...> class P2, typename First, typename... Rest, typename... Visited>
struct VisitHelper<P1<First, Rest...>, P2<Visited...>, true> : Visit<P1<Rest...>, typename Visit<First, P2<Visited...>>::result> {}; // Visit the "subtree" First, and then after that visit Rest... Need to use ::result so that when visiting Rest..., the latest value of the P2<Visited...> pack is used.
// Here First has no children, so the "leaf action" is carried out.
template <template <typename...> class P1, template <typename...> class P2, typename First, typename... Rest, typename... Visited>
struct VisitHelper<P1<First, Rest...>, P2<Visited...>, false> : LeafAction<P1<First, Rest...>, P2<Visited...>> {};
// As a simple example, the leaf action shall simply be appending its type to P<Visited...>.
template <template <typename...> class P1, template <typename...> class P2, typename First, typename... Rest, typename... Visited>
struct LeafAction<P1<First, Rest...>, P2<Visited...>> : Visit<P1<Rest...>, P2<Visited..., First>> {}; // Having visited First, now visit Rest...
template <typename> struct VisitTree;
template <template <typename...> class P, typename... Types>
struct VisitTree<P<Types...>> : Visit<P<Types...>, P<>> {};
// ---------------------------- Testing ----------------------------
template <typename...> struct Pack;
template <typename Last>
struct Pack<Last> {
static void print() {std::cout << typeid(Last).name() << std::endl;}
};
template <typename First, typename... Rest>
struct Pack<First, Rest...> {
static void print() {std::cout << typeid(First).name() << ' '; Pack<Rest...>::print();}
};
template <typename...> struct Group;
template <typename...> struct Wrap;
struct Object {};
int main() {
VisitTree<
Pack<Pack<int, Object, double>, bool, Pack<char, Pack<int, double, Pack<char, Pack<char, long, short>, int, Object>, char>, double>, long>
>::result::print(); // int Object double bool char int double char char long short int Object char double long
std::cout << std::boolalpha << std::is_same<
VisitTree<Pack<Wrap<int, Object, double>, bool, Group<char, Pack<int, double, Pack<char, Wrap<char, long, short>, int, Object>, char>, double>, long>>::result,
Pack<int, Object, double, bool, char, int, double, char, char, long, short, int, Object, char, double, long>
>::value << std::endl; // true
}