我想编写一个函数bar :: Foo a -> Foo b -> Foo c
,这样如果a
和b
属于同一类型,则c
属于该类型,否则它是()
。我怀疑功能依赖会对我有所帮助,但我不确定如何。我写了
class Bar a b c | a b -> c where
bar :: Foo a -> Foo b -> Foo c
instance Bar x x x where
bar (Foo a) (Foo b) = Foo a
instance Bar x y () where
bar _ _ = Foo ()
但显然,bar (Foo 'a') (Foo 'b')
满足两个实例。我如何仅为两个不同类型x /= y
声明一个实例?
答案 0 :(得分:3)
你快到了。您可以使用OverlappingInstances
和UndecidableInstances
轻松完成此操作。由于这可能是一个封闭的世界类,不可判断的实例对你来说可能没什么大不了的。
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances
, OverlappingInstances, TypeFamilies, UndecidableInstances #-}
data Foo a = Foo a deriving Show
class Bar a b c | a b -> c where
bar :: Foo a -> Foo b -> Foo c
instance Bar x x x where
bar (Foo a) (Foo b) = Foo a
instance (u ~ ())=> Bar x y u where
bar _ _ = Foo ()
注意最后一个实例:如果我们将()
放在实例头中它变得比其他实例更具体并且首先匹配,所以我们改为使用类型相等断言TypeFamilies
(~
)。我学到了这个from Oleg。
请注意这种行为:
*Main> bar (Foo 'a') (Foo 'b')
Foo 'a'
*Main> bar (Foo 'a') (Foo True)
Foo ()
*Main> bar (Foo 'a') (Foo 1)
<interactive>:16:1:
Overlapping instances for Bar Char b0 c0
arising from a use of `bar'
Matching instances:
instance [overlap ok] u ~ () => Bar x y u
-- Defined at foo.hs:13:10
instance [overlap ok] Bar x x x -- Defined at foo.hs:9:10
(The choice depends on the instantiation of `b0, c0'
To pick the first instance above, use -XIncoherentInstances
when compiling the other instance declarations)
In the expression: bar (Foo 'a') (Foo 1)
In an equation for `it': it = bar (Foo 'a') (Foo 1)
<interactive>:16:20:
No instance for (Num b0) arising from the literal `1'
The type variable `b0' is ambiguous
Possible fix: add a type signature that fixes these type variable(s)
Note: there are several potential instances:
instance Num Double -- Defined in `GHC.Float'
instance Num Float -- Defined in `GHC.Float'
instance Integral a => Num (GHC.Real.Ratio a)
-- Defined in `GHC.Real'
...plus three others
In the first argument of `Foo', namely `1'
In the second argument of `bar', namely `(Foo 1)'
In the expression: bar (Foo 'a') (Foo 1)
同样在GHC 7.8中你可以访问封闭式家庭,我认为(希望,因为它与我的兴趣相关)将能够以更可口的方式处理这个问题,但细节得到{{3} }