所以我在我的软件中遇到了一个相当大的瓶颈。我在cords
中有一组坐标,其中每一行对应X,Y,Z
个坐标。 cords
中的每个坐标都在atom_proj
中有一个定义的区域。 atoms
变量对应cords
变量,并为atom_proj
提供密钥。
我将坐标投影到grid
数组上然后旋转并重复,直到满足旋转次数。我只投影忽略Y的X和Z坐标。
我在下面简化了我的代码版本。对于小的坐标集和旋转次数,代码运行相对较快。但是如果坐标集和旋转列表都很大,则可能需要很长时间。坐标的数量可以从几百到几万不等。我将grid
上的区域投射到一个或多个旋转上以生成热图。坐标集的热图的示例也如下所示。
问题:
(i) - 如何减少坐标到矩阵的投影时间
(ii) - 是否有更多的pythonic方法将坐标区域应用于grid
而非阵列拼接?
import numpy as np
cords = np.array([[5,4,5],[5,4,3],[6,4,6]])
atoms = np.array([['C'],['H'],['C']])
atom_proj = {'H':np.array([[0,0,0,0,0],[0,0,1,0,0],[0,1,1,1,0],[0,0,1,0,0],[0,0,0,0,0]]),'C':np.array([[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,1,1,1,0,0],[0,0,1,1,1,0,0],[0,0,1,1,1,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0]])}
grid = np.zeros((10,10))
for rot in xrange(1,10):
# This for loop would contain a list of list of rotations to apply which are calculated before hand.
# apply rotation
for values in zip(cords, atoms):
atom_shape = np.shape(atom_proj[values[1][0]])
rad = (atom_shape[0]-1)/2
grid[values[0][2]-rad:values[0][2]+rad+1,values[0][0]-rad:values[0][0]+rad+1] += atom_proj[values[1][0]]
print grid
热图:
答案 0 :(得分:4)
这样的东西应该适用于内循环
extruded = np.zeros((N, 10,10))
extruded[range(N), cords[:,2], cords[:,0]] = 1
grid = np.zeros((10,10))
for atom, proj in atom_proj.iteritems():
centers = extruded[atoms==atom].sum(0)
projected = nd.convolve(centers, proj)
grid += projected
一对夫妇注意到:
2
原子类型数组,而不是长度 - N
个原子数组。for rot in []
循环,因为它在这里没有做任何事情,但它应该适合回来。atoms
是1d,你的是2d。不确定这是否有意。OP_simplified
这是完整的套件:
import numpy as np
import scipy.ndimage as nd
N = 1000
cords = np.random.randint(3, 7, (N, 3)) #np.array([[5,4,5],[5,4,3],[6,4,6]])
atoms = np.random.choice(list('HC'), N) #np.array([['C'],['H'],['C']])
atom_proj = {'H': np.array([[0,0,0,0,0],
[0,0,1,0,0],
[0,1,1,1,0],
[0,0,1,0,0],
[0,0,0,0,0]]),
'C': np.array([[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,1,1,1,0,0],
[0,0,1,1,1,0,0],
[0,0,1,1,1,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0]])}
def project_atom(cords, atoms, atom_proj):
extruded = np.zeros((N, 10,10))
extruded[range(N), cords[:,2], cords[:,0]] = 1
grid = np.zeros((10,10))
for atom, proj in atom_proj.iteritems():
grid += nd.convolve(extruded[atoms.squeeze()==atom].sum(0), proj, mode='constant')
return grid
def OP_simplified(cords, atoms, atom_proj):
rads = {atom: (proj.shape[0] - 1)/2 for atom, proj in atom_proj.iteritems()}
grid = np.zeros((10,10))
for (x,y,z), atom in zip(cords, atoms):
rad = rads[atom]
grid[z-rad:z+rad+1, x-rad:x+rad+1] += atom_proj[atom]
return grid
def OP(cords, atoms, atom_proj):
grid = np.zeros((10,10))
for values in zip(cords, atoms):
atom_shape = np.shape(atom_proj[values[1][0]])
rad = (atom_shape[0]-1)/2
grid[values[0][2]-rad:values[0][2]+rad+1,values[0][0]-rad:values[0][0]+rad+1] += atom_proj[values[1][0]]
return grid
有效!
In [957]: np.allclose(OP(cords, atoms, atom_proj), project_atom(cords, atoms, atom_proj))
Out[957]: True
时间安排:
In [907]: N = 1000
In [910]: timeit OP(cords, atoms, atom_proj)
10 loops, best of 3: 30.7 ms per loop
In [911]: timeit project_atom(cords, atoms, atom_proj)
100 loops, best of 3: 2.97 ms per loop
In [913]: N = 10000
In [916]: timeit project_atom(cords, atoms, atom_proj)
10 loops, best of 3: 33.3 ms per loop
In [917]: timeit OP(cords, atoms, atom_proj)
1 loops, best of 3: 314 ms per loop