我有一个简单的股票投资组合模拟,我试图建模,但尽管有一些尝试,我无法找到一种方法来矢量化这个。也许这是不可能的,但我想知道是否有人有任何想法。
我的观点是,某一天的股票是前两天的账户价值和股票价格的函数。但是,一天的账户价值是前一天的账户价值和今天的股票数量和股票价格变化的函数。因此,股票和账户价值之间存在来回关系,我无法想到一种矢量化方式,因此下面我唯一的解决方案是下面的for循环。
提前致谢!
import pandas as pd
import numpy as np
stats = pd.DataFrame(index = range(0,10))
stats['Acct Val'] = 0.0
stats['Shares'] = 0.0
stats['Stock Px'] = pd.Series([23,25,24,26,22,23,25,25,26,24],index=stats.index)
# Wgt is the percentage of the account value that should be invested in the stock on a given day
stats['Wgt'] = pd.Series([0.5,0.5,0.5,0.5,0.3,0.4,0.4,0.2,0.2,0.0,],index=stats.index)
stats['Daily PNL'] = 0.0
# Start the account value at $10,000.00
stats.ix[0:1, 'Acct Val'] = 10000.0
stats.ix[0:1, 'Wgt'] = 0
for date_loc in range(2, len(stats.index)):
# Keep shares the same unless 'wgt' column changes
if stats.at[date_loc,'Wgt'] != stats.at[date_loc-1,'Wgt']:
# Rebalanced shares are based on the acct value and stock price two days before
stats.at[date_loc,'Shares'] = stats.at[date_loc-2,'Acct Val'] * stats.at[date_loc,'Wgt'] / stats.at[date_loc-2,'Stock Px']
else:
stats.at[date_loc,'Shares'] = stats.at[date_loc-1,'Shares']
# Daily PNL is simply the shares owned on a day times the change in stock price from the previous day to the next
stats.at[date_loc,'Daily PNL'] = stats.at[date_loc,'Shares'] * (stats.at[date_loc,'Stock Px'] - stats.at[date_loc-1,'Stock Px'])
# Acct value is yesterday's acct value plus today's PNL
stats.at[date_loc,'Acct Val'] = stats.at[date_loc-1,'Acct Val'] + stats.at[date_loc,'Daily PNL']
In [44]: stats
Out[44]:
Acct Val Shares Stock Px Wgt Daily PNL
0 10000.000000 0.000000 23 0.0 0.000000
1 10000.000000 0.000000 25 0.0 0.000000
2 9782.608696 217.391304 24 0.5 -217.391304
3 10217.391304 217.391304 26 0.5 434.782609
4 9728.260870 122.282609 22 0.3 -489.130435
5 9885.451505 157.190635 23 0.4 157.190635
6 10199.832776 157.190635 25 0.4 314.381271
7 10199.832776 85.960448 25 0.2 0.000000
8 10285.793224 85.960448 26 0.2 85.960448
9 10285.793224 0.000000 24 0.0 -0.000000
In [45]:
编辑:2013年10月19日晚上11:01:
我尝试使用foobarbecue的代码,但我无法到达那里:
import pandas as pd
import numpy as np
stats = pd.DataFrame(index = range(0,10))
stats['Acct Val'] = 10000.0
stats['Shares'] = 0.0
stats['Stock Px'] = pd.Series([23,25,24,26,22,23,25,25,26,24],index=stats.index)
# Wgt is the percentage of the account value that should be invested in the stock on a given day
stats['Wgt'] = pd.Series([0.5,0.5,0.5,0.5,0.3,0.4,0.4,0.2,0.2,0.0,],index=stats.index)
stats['Daily PNL'] = 0.0
# Start the account value at $10,000.00
#stats.ix[0:1, 'Acct Val'] = 10000.0
stats.ix[0:1, 'Wgt'] = 0
def function1(df_row):
#[stuff you want to do when Wgt changed]
df_row['Shares'] = df_row['Acct Val'] * df_row['Wgt2ahead'] / df_row['Stock Px']
return df_row
def function2(df_row):
#[stuff you want to do when Wgt did not change]
df_row['Shares'] = df_row['SharesPrevious']
return df_row
#Find where the Wgt column changes
stats['WgtChanged']=stats.Wgt.diff() <> 0 # changed ">" to "<>"
#Using boolean indexing, choose all rows where Wgt changed and apply a function
stats['Wgt2ahead'] = stats['Wgt'].shift(-2)
stats = stats.apply(lambda df_row: function1(df_row) if df_row['WgtChanged'] == True else df_row, axis=1)
stats['Shares'] = stats['Shares'].shift(2)
#Likewise, for rows where Wgt did not change
stats['SharesPrevious'] = stats['Shares'].shift(1)
stats = stats.apply(lambda df_row: function2(df_row) if df_row['WgtChanged'] == False else df_row, axis=1)
答案 0 :(得分:0)
def function1(df_row):
[stuff you want to do when Wgt changed]
def function2(df_row):
[stuff you want to do when Wgt did not change]
#Find where the Wgt column changes
stats['WgtChanged']=stats.Wgt.diff() > 0
#Using boolean indexing, choose all rows where Wgt changed and apply a function
stats[stats['WgtChanged']].apply(function1, axis=1)
#Likewise, for rows where Wgt did not change
stats[~stats['WgtChanged']].apply(function2, axis=1)