根据文档,2dSphere geospatial index也可以用于复杂的GeoJSON形状,如LineString和Polygon,它们由多个节点组成。
当您使用$nearSphere搜索填充了此类复杂形状的字段以接近另一个GeoJSON对象(可能也是一个复杂的形状)时,这些形状的距离将如何计算?
它会比较形状的最近节点吗?最遥远的节点?一些平均的节点?形状任何边缘上的最近点?
答案 0 :(得分:2)
$nearSphere
运算符只允许您指定一个点(您可以通过提供maxDistance
参数来定义“球体”的中心)。因此,唯一有意义的答案可能是关于如何最接近最远的形状排序。
答案是所有具有等距“最近”点的形状将在具有最近点的形状之前进行排序。换句话说,点和形状之间的距离是点与形状上最近点之间的距离。
我们可以通过运行$nearSphere
的{{3}}命令的变体来看到它返回计算出的距离然后我们可以检查。
我们的样本数据:
> db.near.find()
{ "_id" : 10, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 5 ], [ 5, 5 ], [ 5, 0 ], [ 0, 0 ] ] ] } }
{ "_id" : 11, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 1, 1 ], [ 1, 5 ], [ 5, 5 ], [ 5, 1 ], [ 1, 1 ] ] ] } }
{ "_id" : 12, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 6 ], [ 6, 6 ], [ 6, 0 ], [ 0, 0 ] ] ] } }
{ "_id" : 13, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 6 ], [ 6, 6 ], [ 6, 0 ], [0, 0 ] ], [ [ 1, 1 ], [ 1, 5 ], [ 5, 5 ], [ 5, 1 ], [ 1, 1 ] ] ] } }
{ "_id" : 14, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 6 ], [ 6, 6 ], [ 6, 0 ], [ 0, 0 ] ], [ [ 0.1, 0.1 ], [ 0.1, 5 ], [ 5, 5 ], [ 5, 0.1 ], [ 0.1, 0.1 ] ] ] } }
{ "_id" : 15, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 1 ], [ 1, 1 ], [ 1, 0 ], [0, 0 ] ], [ [ 0.1, 0.1 ], [ 0.1, 0.5 ], [ 0.5, 0.5 ], [ 0.5, 0.1 ], [ 0.1, 0.1 ] ] ] } }
{ "_id" : 16, "loc" : { "type" : "LineString", "coordinates" : [ [ 0, 0 ], [ 0.1, 0.1 ] ] } }
{ "_id" : 17, "loc" : { "type" : "LineString", "coordinates" : [ [ 0, 0 ], [ 0, 0.1 ] ] } }
{ "_id" : 18, "loc" : { "type" : "LineString", "coordinates" : [ [ 0, 0 ], [ 0.1, 0 ] ] } }
我们使用$ nearSphere的结果:
{ "_id" : 16, "loc" : { "type" : "LineString", "coordinates" : [ [ 0, 0 ], [ 0.1, 0.1 ] ] } }
{ "_id" : 18, "loc" : { "type" : "LineString", "coordinates" : [ [ 0, 0 ], [ 0.1, 0 ] ] } }
{ "_id" : 14, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 6 ], [ 6, 6 ], [ 6, 0 ], [ 0, 0 ] ], [ [ 0.1, 0.1 ], [ 0.1, 5 ], [ 5, 5 ], [ 5, 0.1 ], [ 0.1, 0.1 ] ] ] } }
{ "_id" : 13, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 6 ], [ 6, 6 ], [ 6, 0 ], [ 0, 0 ] ], [ [ 1, 1 ], [ 1, 5 ], [ 5, 5 ], [ 5, 1 ], [ 1, 1 ] ] ] } }
{ "_id" : 15, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 1 ], [ 1, 1 ], [ 1, 0 ], [ 0, 0 ] ], [ [ 0.1, 0.1 ], [ 0.1, 0.5 ], [ 0.5, 0.5 ], [ 0.5, 0.1 ], [ 0.1, 0.1 ] ] ] } }
{ "_id" : 12, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 6 ], [ 6, 6 ], [ 6, 0 ], [ 0, 0 ] ] ] } }
{ "_id" : 17, "loc" : { "type" : "LineString", "coordinates" : [ [ 0, 0 ], [ 0, 0.1 ] ] } }
{ "_id" : 10, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 0, 0 ], [ 0, 5 ], [ 5, 5 ], [ 5, 0 ], [ 0, 0 ] ] ] } }
{ "_id" : 11, "loc" : { "type" : "Polygon", "coordinates" : [ [ [ 1, 1 ], [ 1, 5 ], [ 5, 5 ], [ 5, 1 ], [ 1, 1 ] ] ] } }
运行$geoNear
命令,我们可以确认从点到形状的距离(省略空间考虑的坐标):
> db.runCommand({geoNear:"near", near: {type:"Point", coordinates:[0,0]}, spherical:true})
[
{
"dis" : 0,
"obj" : {
"_id" : 16,
"loc" : {
"type" : "LineString"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 18,
"loc" : {
"type" : "LineString"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 14,
"loc" : {
"type" : "Polygon"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 13,
"loc" : {
"type" : "Polygon"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 15,
"loc" : {
"type" : "Polygon"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 12,
"loc" : {
"type" : "Polygon"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 17,
"loc" : {
"type" : "LineString"
}
}
},
{
"dis" : 0,
"obj" : {
"_id" : 10,
"loc" : {
"type" : "Polygon"
}
}
},
{
"dis" : 157424.6238723255,
"obj" : {
"_id" : 11,
"loc" : {
"type" : "Polygon"
}
}
}
]
正如您所看到的,即使形状的大小和形状各不相同,每个形状(从[1,1]开始的最后一个形状除外)到点[0,0]的距离为0。在与指定点具有相同距离的文档中,未定义订单。这意味着,即使看起来确定性,也不能保证是相同的。