我正在尝试创建一款具有Terraria感觉的游戏,我浏览了许多线程/论坛,似乎无法为自己找到任何工作。我选择了Simplex Noise算法来尝试生成像Terraria这样的侧视游戏,但这只是一个乱七八糟的混乱。我想知道是否有人可以帮助我使用我在网上找到的Simplex Noise类来制作地形生成器?我有32x32的块,我想为地形生成,然后我想要在某些深度,等等。我会将代码发布到下面的类。我只是从这个随机生成的东西开始,这对我来说非常棘手。
import java.util.Random;
public class SimplexNoise {
private static int grad3[][] = { {1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
{1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}};
private static int p[] = { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
// To remove the need for index wrapping, double the permutation table length
private static int perm[] = new int[512];
static {
for(int i = 0; i < 512; i++)
perm[i] = p[i & 255];
}
// This method is a *lot* faster than using (int)Math.floor(x)
private static int fastfloor(double x) {
return x > 0 ? (int)x : (int)x - 1;
}
private static double dot(int g[], double x, double y) {
return g[0] * x + g[1] * y;
}
// 2D simplex noise
public static double noise(double xin, double yin) {
double n0, n1, n2;
final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
double s = (xin + yin) * F2;
int i = fastfloor(xin + s);
int j = fastfloor(yin + s);
final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
double t = (i + j) * G2;
double X0 = i - t;
double Y0 = j - t;
double x0 = xin - X0;
double y0 = yin - Y0;
int i1, j1;
if (x0 > y0) {
i1=1;
j1=0;
} else {
i1 = 0;
j1 = 1;
}
double x1 = x0 - i1 + G2;
double y1 = y0 - j1 + G2;
double x2 = x0 - 1.0 + 2.0 * G2;
double y2 = y0 - 1.0 + 2.0 * G2;
int ii = i & 255;
int jj = j & 255;
int gi0 = perm[ii + perm[jj]] % 12;
int gi1 = perm[ii + i1 + perm[jj + j1]] % 12;
int gi2 = perm[ii + 1 + perm[jj + 1]] % 12;
double t0 = 0.5 - x0 * x0 - y0 * y0;
if(t0 < 0)
n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0);
}
double t1 = 0.5 - x1 * x1 - y1 * y1;
if(t1 < 0)
n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2 * x2 - y2 * y2;
if(t2 < 0)
n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
return 70.0 * (n0 + n1 + n2);
}
public static void genGrad(long seed) {
Random rnd = new Random(seed);
for(int i = 0; i < 255; i++)
p[i] = i;
for(int i = 0; i < 255; i++) {
int j = rnd.nextInt(255);
int nSwap = p[i];
p[i] = p[j];
p[j] = nSwap;
}
for(int i = 0; i < 512; i++)
perm[i] = p[i & 255];
}
}
这是我正在使用的新代码,它打印出同一位置的所有块:
Block[][] chunk = new Block[Chunk.CHUNK_WIDTH_BLOCKS][Chunk.CHUNK_HEIGHT_BLOCKS];
float[][] positions = new float[Chunk.CHUNK_WIDTH_BLOCKS][Chunk.CHUNK_HEIGHT_BLOCKS];
float frequency = 1.0f / (float) chunk.length;
for (int x = 0; x < chunk.length - 1; x++)
{
for (int y = 0; y < chunk[x].length - 1; y++)
{
positions[x][y] = SimplexNoise.Generate((float) x * frequency, (float) y * frequency);
g.drawRect(positions[x][0], positions[0][y], Block.BLOCK_WIDTH, Block.BLOCK_HEIGHT);
}
}
for (int x = 0; x < Chunk.CHUNK_WIDTH_BLOCKS; x++)
{
for (int y = 0; y < Chunk.CHUNK_HEIGHT_BLOCKS; y++)
{
if (positions[x][y] < 0f)
chunk[x][y] = new Block();
if (positions[x][y] >= -0f)
chunk[x][y] = new Block();
}
}
答案 0 :(得分:0)
我刚刚发现这个LINK来解释如何在像terraria这样的二维地形生成中使用Perlin噪声。
以下是噪音等级的代码:
public class Noise
{
/// <summary>
/// 1D simplex noise
/// </summary>
/// <param name="x"></param>
/// <returns></returns>
public static float Generate(float x)
{
int i0 = FastFloor(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float n0, n1;
float t0 = 1.0f - x0 * x0;
t0 *= t0;
n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);
float t1 = 1.0f - x1 * x1;
t1 *= t1;
n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
/// <summary>
/// 2D simplex noise
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns></returns>
public static float Generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y) * F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
float t = (float)(i + j) * G2;
float X0 = i - t; // Unskew the cell origin back to (x,y) space
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i % 256;
int jj = j % 256;
// Calculate the contribution from the three corners
float t0 = 0.5f - x0 * x0 - y0 * y0;
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0);
}
float t1 = 0.5f - x1 * x1 - y1 * y1;
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1);
}
float t2 = 0.5f - x2 * x2 - y2 * y2;
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
public static float Generate(float x, float y, float z)
{
// Simple skewing factors for the 3D case
const float F3 = 0.333333333f;
const float G3 = 0.166666667f;
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
float xs = x + s;
float ys = y + s;
float zs = z + s;
int i = FastFloor(xs);
int j = FastFloor(ys);[attachment=11149:perlinBug.png]
int k = FastFloor(zs);
float t = (float)(i + j + k) * G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0)
{
if (y0 >= z0)
{ i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
}
else
{ // x0<y0
if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
float y1 = y0 - j1 + G3;
float z1 = z0 - k1 + G3;
float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords
float y2 = y0 - j2 + 2.0f * G3;
float z2 = z0 - k2 + 2.0f * G3;
float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords
float y3 = y0 - 1.0f + 3.0f * G3;
float z3 = z0 - 1.0f + 3.0f * G3;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i % 256;
int jj = j % 256;
int kk = k % 256;
// Calculate the contribution from the four corners
float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);
}
float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1);
}
float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2);
}
float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0.0f) n3 = 0.0f;
else
{
t3 *= t3;
n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
}
private static byte[] perm = new byte[512] { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
private static int FastFloor(float x)
{
return (x > 0) ? ((int)x) : (((int)x) - 1);
}
private static float grad(int hash, float x)
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
return (grad * x); // Multiply the gradient with the distance
}
private static float grad(int hash, float x, float y)
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);
}
private static float grad(int hash, float x, float y, float z)
{
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h < 8 ? x : y; // gradient directions, and compute dot product.
float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v);
}
private static float grad(int hash, float x, float y, float z, float t)
{
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h < 24 ? x : y; // gradient directions, and compute dot product.
float v = h < 16 ? y : z;
float w = h < 8 ? z : t;
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w);
}
}
他使用它的方式是这样的:
private void CreatePerlinWorld()
{
world = new Tile[_maxWidth, _maxHeight];
diamond = new float[_maxWidth, _maxHeight];
for (int x = 0; x < world.GetLength(0) - 1; x++)
{
for (int y = 0; y < world.GetLength(1) - 1; y++)
{
diamond[x,y] = Noise.Generate(x, y);
}
}
}
private void GeneratePerlinWorld()
{
for (int x = 0; x < _maxWidth; x++)
{
for (int y = 0; y < _maxHeight; y++)
{
if (diamond[x, y] < 0f)
world[x, y] = new Tile(TileType.None, TileCollision.Passable, ToolType.None);
if (diamond[x, y] >= -0f)
world[x, y] = new Tile(TileType.Dirt, TileCollision.Impassable, ToolType.Pickaxe);
}
}
}