numpy curve_fitting无法运行特定集

时间:2013-09-30 11:15:18

标签: python numpy scipy curve-fitting

我有一组数字,当我尝试对它们进行曲线拟合时会导致错误。我很确定我之前用相同的数字设法做到这一点(我确定我用其他数据集做过)。是什么导致了这个错误?

XYErr值(按出现顺序)

[0.0, 0.6931471805599453, 1.3862943611198906]
[-5.354761064902713, -6.190455611580044, -6.558604540577015]
[0.0014079400762288246, 0.0006083544693643583, 0.0002989970199491765]

kappa等于8

这是我尝试适合的功能(主要是+ 2 * x)

 out = []
    for x in X:
        y = log(kappa)
        y += 4*log(pi)
        y += 2*x 
        y -= 2*log(2)
        out.append(-y)
    return np.array(out)

这就是我致电curve_fit

的方式
 popt,pcov = curve_fit(fitFunc1,self.X[0:3],self.Y[0:3],sigma=self.Err[0:3],p0=kappa)

这是我得到的错误

popt,pcov = curve_fit(fitFunc1,self.X[0:3],self.Y[0:3],sigma=self.Err[0:3],p0=kappa)
  File "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py", line 506, in curve_fit
    res = leastsq(func, p0, args=args, full_output=1, **kw)
  File "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py", line 355, in leastsq
    gtol, maxfev, epsfcn, factor, diag)
minpack.error: Error occurred while calling the Python function named _weighted_general_function

编辑1

添加了kappa值(8)


编辑2

以下是此

的最小工作示例
#!/usr/bin/python
import numpy as np
from scipy.optimize import curve_fit
from math import log,pi
X = [0.0, 0.6931471805599453, 1.3862943611198906]
Y = [-5.354761064902713, -6.190455611580044, -6.558604540577015]
Err = [0.0014079400762288246, 0.0006083544693643583, 0.0002989970199491765]
kappa = 8

def func(X,kappa):
    out = []
    for x in X:
        y = log(kappa)
        y += 4*log(pi)
        y += 2*x 
        y -= 2*log(2)
        out.append(-y)
    return np.array(out)


popt,pcov = curve_fit(func,X,Y,sigma=Err,p0=kappa)

1 个答案:

答案 0 :(得分:0)

首先,将输入数组转换为numpy数组。这允许您在func中使用广播。此外,您应检查是否kappa<=0并返回错误的拟合值,以防止在您可能感兴趣的域外进行评估:

import numpy as np
from scipy.optimize import curve_fit
X = np.array([0.0, 0.6931471805599453, 1.3862943611198906])
Y = np.array([-5.354761064902713, -6.190455611580044, -6.558604540577015])
Err = np.array([0.0014079400762288246, 0.0006083544693643583, 0.0002989970199491765])
kappa = 8.0

def func(X,kappa):
    if kappa <=0: return np.inf
    return -(np.log(kappa) + 4*np.log(np.pi) + 2*X - 2*np.log(2))

popt,pcov = curve_fit(func,X,Y,sigma=Err,p0=kappa)