我刚开始研究Hadoop,我从一本书中提取了一个例子。所以我创建了一个MapReducer来在本地运行,从NCDC免费数据文件中提取温度。这是一个数据样本:
0143023780999992012010100004+61450+017167FM-12+002799999V0209999C...cut...;
每个文件(我下载了大约100个文件)都是由许多行组成的。
我的映射器执行简单的解析操作以从这些文件中提取温度。整个过程将返回最高温度。
Mapper和相关测试:
public class MaxTemperatureMapper extends Mapper<LongWritable,Text,Text,IntWritable> {
@Override
public void map(LongWritable key, Text value, Context context) {
String record = value.toString();
String year = record.substring(15,19);
int airTemperature = extractTemp(record);
if (isNotValidTemp(record, airTemperature)) return;
try {
context.write(new Text(year), new IntWritable(airTemperature));
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private boolean isNotValidTemp(String record, int airTemperature) {
return airTemperature == 9999 || !record.substring(92, 93).matches("[01459]");
}
private int extractTemp(String record) {
String temp = (record.charAt(87) == '+')
? record.substring(88,92)
: record.substring(87,92);
return Integer.parseInt(temp);
}
}
public class MaxTemperatureMapperTest {
@Test
public void processRecord() {
Text value = new Text("0111011120999992012010100004+65450+012217FM-12+000999999V0201301N014019999999N9999999N1+00031-00791099271ADDMA1999999099171MD1810341+9999REMSYN070AAXX 01001 01112 46/// /1314 10003 21079 39917 49927 58034 333 91124;");
new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new MaxTemperatureMapper())
.withInputValue(value)
.withOutput(new Text("2012"), new IntWritable(3))
.runTest();
}
@Test
public void processRecordsFromSuspiciousFile() throws IOException {
final InputStream is = getClass().getClassLoader().getSystemResource("023780-99999-2012").openStream();
BufferedReader br = new BufferedReader(new InputStreamReader(is));
String line;
Iterator<Integer> ii = Arrays.asList(-114, -120, -65, -45, 1, 4, 6, 6, 10, 16, 18, 29, 32, 17, 7, 16, 22, 8, 8, 20).iterator();
while ((line = br.readLine()) != null) {
new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new MaxTemperatureMapper())
.withInputValue(new Text(line))
.withOutput(new Text("2012"), new IntWritable(ii.next()))
.runTest();
}
br.close();
}
}
减速剂和相关测试:
public class MaxTemperatureReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) {
int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(value.get(), maxValue);
}
try {
context.write(key, new IntWritable(maxValue));
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public class MaxTemperatureReducerTest {
@Test
public void processRecord() {
new ReduceDriver<Text,IntWritable,Text,IntWritable>()
.withReducer(new MaxTemperatureReducer())
.withInputKey(new Text("2012"))
.withInputValues(Arrays.asList(new IntWritable(5), new IntWritable(10)))
.withOutput(new Text("2012"), new IntWritable(10))
.runTest();
}
}
最后是Driver class + test:
public class MaxTemperatureDriver extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;
}
Job job = new Job(getConf(), "Max Temperature");
job.setJarByClass(getClass());
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Iterable.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);
System.exit(exitCode);
}
}
public class MaxTemperatureDriverTest {
@Test
public void test() throws Exception {
Configuration conf = new Configuration();
conf.set("fs.default.name", "file:///");
conf.set("mapred.job.tracker", "local");
Path input = new Path("file:////home/user/big-data/ncdc/");
Path output = new Path("output");
FileSystem fs = FileSystem.getLocal(conf);
fs.delete(output, true);
MaxTemperatureDriver driver = new MaxTemperatureDriver();
driver.setConf(conf);
int exitCode = driver.run(new String[] { input.toString(), output.toString() });
assertThat(exitCode, is(0));
}
}
我使用命令行运行整个过程:
$> hadoop doop.MaxTemperatureDriver -fs file:/// -jt local ~/big-data/ncdc/ output
和MaxTemperatureDriverTest中的测试,但在两种情况下我都得到了:
13/09/21 19:45:13 INFO mapred.MapTask: Processing split: file:/home/user/big-data/ncdc/023780-99999-2012:0+5337
13/09/21 19:45:13 INFO mapred.MapTask: io.sort.mb = 100
13/09/21 19:45:14 INFO mapred.MapTask: data buffer = 79691776/99614720
13/09/21 19:45:14 INFO mapred.MapTask: record buffer = 262144/327680
13/09/21 19:45:14 INFO mapred.LocalJobRunner: Map task executor complete.
13/09/21 19:45:14 WARN mapred.LocalJobRunner: job_local462595973_0001
java.lang.Exception: java.lang.NullPointerException
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354)
Caused by: java.lang.NullPointerException
at org.apache.hadoop.io.serializer.SerializationFactory.getSerializer(SerializationFactory.java:73)
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.<init>(MapTask.java:970)
at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:673)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:756)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:439)
at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303)
at java.util.concurrent.FutureTask.run(FutureTask.java:138)
at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
at java.lang.Thread.run(Thread.java:662)
以“过于通用”的方式,当尝试解析文件“023780-99999-2012”时,它总是返回空指针异常。所以我为它编写了一个测试(你可以在mapper测试中看到“processRecordsFromSuspiciousFile”),但它不会返回错误。我还检查了日志,没有任何成功。
是否与错误或缺少本地模式参数(数字线程,堆内存等)有关?或者代码中有什么问题?
答案 0 :(得分:1)
Hadoop不知道如何序列化Iterable
。如果您确实打算使用Iterable
作为输出值类,则还需要为Iterable
指定序列化程序。与Hadoop一起使用的典型I / O类型是Writable
的子类。
更新:我现在看到您打算使用IntWritable
作为输出值类。你的问题是这个驱动因素:
job.setOutputValueClass(Iterable.class)
应该是
job.setOutputValueClass(IntWritable.class)