假设我有一个类似
的矩阵0 -1 0 0
0 0 -1 0
0 0 0 0
0 0 -1 -1
所以在这种情况下矩阵代表:
0是锥形的,-1不是 如何从中获得邻接矩阵?
我知道
h[i][j] = 0, if there is no direct link from i to j
(i and j are not neighbors)
h[i][j] = 1, if there is a direct link from i to j
(i and j are neighbors)
所以我做的事情是:
Int32[,] original = new int[4, 4]
{
{0, -1, 0, 0},
{0, 0, -1, 0},
{0, 0, 0, 0},
{0, 0, -1, -1}
}
Int32[,] adjacent;
for (int i = 0; i < original.GetLength(0); i++){
for (int j = 0; j < original.GetLength(1); j++) {
//How to know if there is direct link from i to j
//if(){
// adjacent[i,j]=0;
//}else{
// adjacent[i,j]=1;
//}
}
}
答案 0 :(得分:2)
原始代码存在问题 - 矩阵adjacent
和original
的大小通常不同。
但它在某种程度上很接近。
未经测试的代码:
int size = original.GetLength(0) * original.GetLength(1);
int[,] adjacent = new int[size, size];
for (int i = 0; i < original.GetLength(0); i++) {
for (int j = 0; j < original.GetLength(1); j++) {
if (original[i, j] == 0) {
// up/down
if (j > 0 && original[i, j - 1] == 0) {
adjacent[remap(i, j), remap(i, j - 1)] = 1;
adjacent[remap(i, j - 1), remap(i, j)] = 1;
}
// left/right
if (i > 0 && original[i - 1, j] == 0) {
adjacent[remap(i, j), remap(i - 1, j)] = 1;
adjacent[remap(i - 1, j), remap(i, j)] = 1;
}
}
}
}
remap
将2D点映射到“节点索引”。它可能需要更多的论据。它可能是这样的:
int remap(int i, int j, int width)
{
return width * i + j;
}
还有其他可能性,但这是最简单的。
答案 1 :(得分:1)
对于具有n
个节点的图表,邻接矩阵是n
到n
矩阵(参见示例here),正如@harold已经说明的那样。因此,您需要在网格中节点的物理(i,j)
坐标与0
和n-1
之间的节点编号之间进行映射。
这是一些沿着右边的代码。我查看了调试器中的输出并检查了它看起来没问题的前几行。
class Program
{
static void AddToAdjacencyMatrix(Int32[,] adjacency, Int32[,] original,
Dictionary<Tuple<int, int>, int> coordinate2NodeNum,
Tuple<int, int> fromCoord, int deltaX, int deltaY)
{
Tuple<int, int> toCoord = new Tuple<int, int>(
fromCoord.Item1 + deltaX, fromCoord.Item2 + deltaY);
try { // quick and dirty way of catching out of range coordinates
if (original[toCoord.Item1,toCoord.Item2] == 0) {
int fromNodeNum = coordinate2NodeNum[fromCoord];
int toNodeNum = coordinate2NodeNum[toCoord];
adjacency[fromNodeNum, toNodeNum] = 1;
adjacency[toNodeNum, fromNodeNum] = 1;
}
}
catch {
}
}
static void Main(string[] args)
{
Int32[,] original = new int[4, 4]
{
{0, -1, 0, 0},
{0, 0, -1, 0},
{0, 0, 0, 0},
{0, 0, -1, -1}
};
// Adjacency matrix has column and row headings for each node in graph
// Therefore we need to map between the node number in the adjacency matrix
// (i.e. the column or row heading) and the physical grid coordinates
Dictionary<int, Tuple<int, int>> nodeNum2Coordinate = new Dictionary<int, Tuple<int, int>>();
Dictionary<Tuple<int, int>, int> coordinate2NodeNum = new Dictionary<Tuple<int, int>, int>();
int nodeCount = 0;
for (int i = 0; i < original.GetLength(0); i++){
for (int j = 0; j < original.GetLength(1); j++) {
if (original[i, j] == 0) {
Tuple<int, int> coord = new Tuple<int, int>(i,j);
nodeNum2Coordinate.Add(nodeCount, coord);
coordinate2NodeNum.Add(coord, nodeCount);
nodeCount++;
}
}
}
// Now create the adacency matrix
Int32[,] adjacency = new int[nodeCount, nodeCount];
for (int i = 0; i < original.GetLength(0); i++){
for (int j = 0; j < original.GetLength(1); j++) {
if (original[i, j] == 0) {
Tuple<int, int> fromCoord = new Tuple<int, int>(i,j);
// Check connections
AddToAdjacencyMatrix(adjacency, original, coordinate2NodeNum, fromCoord,
-1, 0); // UP
AddToAdjacencyMatrix(adjacency, original, coordinate2NodeNum, fromCoord,
+1, 0); // DOWN
AddToAdjacencyMatrix(adjacency, original, coordinate2NodeNum, fromCoord,
0, -1); // LEFT
AddToAdjacencyMatrix(adjacency, original, coordinate2NodeNum, fromCoord,
0, +1); // UP
}
}
}
Console.ReadLine();
}
}