与scikit-learn pairwise_distances中的n_jobs并行化

时间:2013-08-30 01:32:11

标签: python scikit-learn

感谢Philip Cloud的出色answer to a previous question,我在scikit中挖掘了pairwise_distances的源代码。

相关部分是:

def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
    if metric == "precomputed":
        return X
    elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
        func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
        if n_jobs == 1:
            return func(X, Y, **kwds)
        else:
            return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
    elif callable(metric):
        # Check matrices first (this is usually done by the metric).
        X, Y = check_pairwise_arrays(X, Y)
        n_x, n_y = X.shape[0], Y.shape[0]
        # Calculate distance for each element in X and Y.
        # FIXME: can use n_jobs here too
        D = np.zeros((n_x, n_y), dtype='float')
        for i in range(n_x):
            start = 0
            if X is Y:
                start = i
            for j in range(start, n_y):
                # distance assumed to be symmetric.
                D[i][j] = metric(X[i], Y[j], **kwds)
                if X is Y:
                    D[j][i] = D[i][j]
        return D

从中理解是否正确如果我要计算成对距离矩阵,如:

matrix = pairwise_distances(foo, metric=lambda u,v: haversine(u,v), n_jobs= -1)

其中haversine(u,v)是计算两点之间的Haversine距离的函数,此函数在PAIRWISE_DISTANCE_FUNCTIONS,该计算即使n_jobs= -1

也可以并行化

我意识到#FIXME评论似乎暗示了这一点,但我想确保我不会发疯,因为似乎有点奇怪的是没有提供信息警报,说明计算使用不在n_jobs= -1中的可调用函数传递PAIRWISE_DISTANCE_FUNCTIONS时,实际上不会进行并行化。

1 个答案:

答案 0 :(得分:3)

确认。如果callable不在metric中,则将n_jobs= -1PAIRWISE_DISTANCE_FUNCTIONS作为{{1}}传递将不会导致并行化。