我正在尝试绘制我的svm分类器结果。 “迷你程序”显示为here。为了绘图我继续使用this scikit-learn的例子。我已经修改了代码,如下所示。好吧,我不知道我是不是正确的方式,因为我不明白,当我将数据减少到2-D时,如果集群中心(100到300原始数据之间)也减少了或者发生了什么当我试图采取大“尺寸”并将它们挤入二维时。也许有人可以为我解释^^
#!/usr/bin/env python
import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
def reduce_dim(datas):
pca = PCA(n_components=2)
pca.fit(datas)
data_pca = pca.transform(datas)
return data_pca
def plotter_plot(kmeans, clf, X, X_train, X_test, y_train, y_test):
names = ["RBF SVM"]
classifiers = []
classifiers.append(clf)
h = .01 # step size in the mesh
X_r = reduce_dim(X)
X_train_r = reduce_dim(X_train)
X_test_r = reduce_dim(X_test)
figure = pl.figure(figsize=(15, 5))
x_min, x_max = X_r[:, 0].min() - .5, X_r[:, 0].max() + .5
y_min, y_max = X_r[:, 1].min() - .5, X_r[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))
# just plot the dataset first
cm = pl.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = pl.subplot(1, 2, 1)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i = 2
for name, clf in zip(names, classifiers):
ax = pl.subplot(1, 2, i)
clf.fit(X_train_r, y_train)
score = clf.score(X_test_r, y_test)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
# Plot also the training points
ax.scatter(X_train_r[:, 0], X_train_r[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test_r[:, 0], X_test_r[:, 1], c=y_test, cmap=cm_bright,
alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
i += 1
figure.subplots_adjust(left=.02, right=.98)
pl.show()
这是使用clf再次适应“减少数据”的正确方法吗?他们已经适合训练和分类!那么有错误还是我应该再次适应2-D数据呢?
谢谢...
答案 0 :(得分:2)
简短的回答:你想要做的是不可能的。 之前有人问过这个问题。
您无法在2d中绘制n维决策曲面。 你可以做的只是在2d中绘制数据的投影,并根据他们的预测标记它们。
有一个情节类似于你想要的in this example。 我是这个例子的作者,但我不确定情节是否有任何实际意义。我从不使用这样的情节来检查我的分类器。